• Title/Summary/Keyword: Structural Models

Search Result 3,632, Processing Time 0.037 seconds

Structural monitoring and maintenance by quantitative forecast model via gray models

  • C.C. Hung;T. Nguyen
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • This article aims to quantitatively predict the snowmelt in extreme cold regions, considering a combination of grayscale and neural models. The traditional non-equidistant GM(1,1) prediction model is optimized by adjusting the time-distance weight matrix, optimizing the background value of the differential equation and optimizing the initial value of the model, and using the BP neural network for the first. The adjusted ice forecast model has an accuracy of 0.984 and posterior variance and the average forecast error value is 1.46%. Compared with the GM(1,1) and BP network models, the accuracy of the prediction results has been significantly improved, and the quantitative prediction of the ice sheet is more accurate. The monitoring and maintenance of the structure by quantitative prediction model by gray models was clearly demonstrated in the model.

Locating and identifying model-free structural nonlinearities and systems using incomplete measured structural responses

  • Liu, Lijun;Lei, Ying;He, Mingyu
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.409-424
    • /
    • 2015
  • Structural nonlinearity is a common phenomenon encountered in engineering structures under severe dynamic loading. It is necessary to localize and identify structural nonlinearities using structural dynamic measurements for damage detection and performance evaluation of structures. However, identification of nonlinear structural systems is a difficult task, especially when proper mathematical models for structural nonlinear behaviors are not available. In prior studies on nonparametric identification of nonlinear structures, the locations of structural nonlinearities are usually assumed known and all structural responses are measured. In this paper, an identification algorithm is proposed for locating and identifying model-free structural nonlinearities and systems using incomplete measurements of structural responses. First, equivalent linear structural systems are established and identified by the extended Kalman filter (EKF). The locations of structural nonlinearities are identified. Then, the model-free structural nonlinear restoring forces are approximated by power series polynomial models. The unscented Kalman filter (UKF) is utilized to identify structural nonlinear restoring forces and structural systems. Both numerical simulation examples and experimental test of a multi-story shear building with a MR damper are used to validate the proposed algorithm.

Structural performance assessment of deteriorated reinforced concrete bridge piers

  • Kim, T.H.
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.387-403
    • /
    • 2014
  • The aim of this study is to assess the structural performance of deteriorated reinforced concrete bridge piers, and to provide method for developing improved evaluation method. For a deteriorated bridge piers, once the cover spalls off and bond between the reinforcement and concrete has been lost, compressed reinforcements are likely to buckle. By using a sophisticated nonlinear finite element analysis program, the accuracy and objectivity of the assessment process can be enhanced. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze reinforced concrete structures. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. Advanced deteriorated material models are developed to predict behaviors of deteriorated reinforced concrete. The proposed numerical method for the structural performance assessment of deteriorated reinforced concrete bridge piers is verified by comparing it with reliable experimental results. Additionally, the studies and discussions presented in this investigation provide an insight into the key behavioral aspects of deteriorated reinforced concrete bridge piers.

Structure Structural Durability Analysis on Bike Carrier Basket (자전거 짐받이에 대한 구조적 내구성 해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • This study investigates structural durability through the analyses of stress, fatigue life and vibration damage at bike carrier basket. As model 2 has less stress and deformation than model 1 on static structural analysis, model 2 becomes more durable than model 1. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. The amplitude deformations become highest at maximum response frequency of 2400Hz in cases of models 1 and 2. As the values of maximum equivalent stresses become within the allowable material stresses at two holes at the upper parts on models 1 and 2, these models become safe. The structural result of this study can be effectively utilized with the design of bike carrier basket by investigating prevention and durability against fatigue or vibration damage.

Numerical studies on shear connectors in push-out tests under elevated temperatures

  • Wang, Aaron J.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.317-338
    • /
    • 2011
  • Three-dimensional thermal and mechanical coupled finite element models are proposed to study the structural behaviours of shear connectors under fire. Concrete slabs, steel beams and shear connectors are modelled with eight-noded solid elements, and profiled steel deckings are modelled with eight-noded shell elements. Thermal, mechanical and geometrical nonlinearities are incorporated into the models. With the proper incorporation of thermal and mechanical contacts among steel beams, shear connectors, steel deckings and concrete slabs, both of the models are verified to be accurate after the validation against a series of push-out tests in the room temperature or under the standard fire. Various thermal and mechanical responses are also extracted and observed in details from the results of the numerical analyses, which gives a better understanding of the structural behavior of shear connectors under elevated temperatures.

Structural strength analysis according to the configuration of speaker placer with wall hanger type (벽걸이형 스피커 거치대 형상에 따른 구조강도 해석)

  • Cho, Jae Ung;Han, Moon Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • This study investigates life and damage due to structural and fatigue load at speaker placer with wall hanger type. As the small stress and deformation are shown at the models of A, B and C shapes on structural analysis, there is no problem at installing speaker placer. As the largest stress is happened at the middle part of joint on the models of A, B and C shapes, this part must be considered at the design. A shape is thought to have most fatigue damage among 3 shape models. C shape model has most excellent, but A model has least at fatigue durability. This study result is applied with the design of speaker placer and it can be useful at predicting prevention and durability against its damage.

Application of the compressive-force path concept in the design of reinforced concrete indeterminate structures: A pilot study

  • Seraj, Salek M.;Kotsovos, Michael D.;Pavlovic, Milija N.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.475-495
    • /
    • 1995
  • In the past, physical models have been proposed, in compliance with the concept of the compressive-force path, for the realistic design of various statically determinate structural concrete members. The present work extends these models so as to encompass indeterminate RC structural forms. Pilot tests conducted on continuous beams and fixed-ended portal frames have revealed that designing such members to present-day concepts may lead to brittle types of failure. On the other hand, similar members designed on the basis of the proposed physical models attained very ductile failures. It appears that, unlike current design approaches, the compressive-force path concept is capable of identifying those areas where failure is most likely to be triggered, and ensures better load redistribution, thus improving ductility. The beneficial effect of proper detailing at the point of contraflexure in an indeterminate RC member is to be noted.

FE Model Calibration of Myeong-dong Cathedral Using Vibration Measurement Data (진동 계측 데이터를 이용한 명동 성당 유한요소 모델 개선)

  • Hwang, In Hwan;Jeon, Jin Yong;Kim, Ji Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.987-995
    • /
    • 2013
  • One of the most important processes to accurately predict structural responses is to evaluate accurate structural dynamic characteristics using finite element(FE) models. The numerical structural dynamic characteristics usually show considerable discrepancies with the measured ones because structural details are commonly simplified in the FE models. To identify such discrepancies, FE models of them have been calibrated using the measured dynamic characteristics in previous researches. In this study, the dynamic characteristics were measured for a historic cathedral and the FE model of it was calibrated using the measured results as a reference. Finally, a procedure of the FE model construction for the unreinforced masonry cathedral were tentatively proposed.

Durability Study by Strength Analysis of Bicycle Handle (자전거 핸들의 강도 해석에 의한 내구성 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.1-7
    • /
    • 2019
  • Most of people are riding on their own bicycle due to the health and environmental pollution problems. The weight must be light in order to run farther and easier by bicycle. The durability will be reduced due to the light weight of tubes and handles at bicycle. To solve this problem, the three bicycle handle models 1, 2 and 3 were compared with each other for structural analysis. The structural analysis was carried out in this study. Among three models, model 2 and model 3 had the highest and lowest strengths at the structural analysis results, respectively. At this study result, model 1 is thought to be the balanced excellent model with no defect among three models.

Structural Behavior of Reinforced Concrete Slab Rigid-frame Bridge with H-Shaped Steel Girders

  • Nakai, Yoshiaki;Ha, Tuan Minh;Fukada, Saiji
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1219-1241
    • /
    • 2018
  • This study aims towards the improvement of a reinforced concrete rigid-frame bridge in an effort to reduce the construction and maintenance costs, and achieve an improved seismic performance. Correspondingly, a new structural rigid connection is proposed for H-shaped steel girders and reinforcing bars at the corner of the rigid-frame structure. Both experiments and numerical analyses were performed. Prototype models were constructed and subjected to static loading tests to reveal their load-carrying capacity and failure mode. Numerical models were then developed using finite elements to evaluate the experimental results. Analyses elicited good agreement between simulation and experimental data and validated the numerical models. Moreover, the validity of the proposed rigid connection was confirmed, and the failure behavior was clarified. Finally, a full-size model of the reinforced concrete rigid-frame bridge with H-shaped steel girders was constructed and subjected to destructive loading tests to evaluate structural integrity of the proposed rigid connection.