• 제목/요약/키워드: Structural Model Test

검색결과 2,457건 처리시간 0.026초

모델링 오차를 고려한 신경망 기법 기반 손상추정방법 (Neural Networks-Based Damage Detection for Bridges Considering Errors in Baseline Finite Element Models)

  • Lee, Jong-Jae;Yun, Chung-Bang;Lee, Jong-Won;Jung, Hie-Young
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.382-387
    • /
    • 2003
  • In this paper, a neural networks-based damage detection method using the modal properties is presented, which can effectively reduce the effect of the modeling errors in the baseline finite element model from which the training patterns for the networks are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modeling errors than the mode shapes themselves. Results of laboratory test on a simply supported bridge model and field test on a bridge with multiple girders confirm the applicability of the present method.

  • PDF

자동차용 컨트롤암의 내구성능 평가 (Durability Evaluation of Automobile Control Arm)

  • 김종규;장병현;박영철;이권희
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.168-172
    • /
    • 2012
  • Control arm is the structural component that pivots on two places. One end of the control arm is attached to the body frame and the other end is attached to the steering knuckle. The former research proposed the structural design by applying optimization technique with aluminum alloy. This study suggests a durability test method on the developed upper control arm to validate the analysis results. The durability analysis results of the developed control arm by using MSC Fatigue is confirmed to be close to infinite life. The weak model of developed control arm which occurs to finite life is made to perform the durability test and the zig design is developed in this process.

Ambient vibration tests on a 19 - story asymmetric steel building

  • Shakib, H.;Parsaeifard, N.
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.1-11
    • /
    • 2011
  • Ambient vibration tests were carried out to evaluate the dynamic properties of an asymmetric steel building with semi-rigid connections. The test case has many non-structural elements, constructed in the city of Tehran (Iran). The tests were conducted to obtain natural frequencies, mode shapes and damping ratio of the structure and then Fourier transform were used to analyze the velocity records obtained from the tests. The first and second natural periods of the building were obtained as 1.37 s and 1.28 s through the test and damping ratio for the first mode was calculated as 0.047. However, Natural periods obtained from finite element model have higher values from those gained from ambient vibration. Then the model was calibrated by modeling of the in-fill masonry panels at their exact locations and considering the boundary conditions by modeling two blocks near the block No. 3, but the differences were existed. These differences may be due to some hidden stiffness of nonstructural elements in the low range of elastic behavior, showing the structure stiffer than it is in reality.

셀프 센터링이 가능한 디스크 스프링 브레이스의 이력특성에 관한 연구 (A Study on the Hysteretic Characteristics of Self-Centering Disc Spring Brace)

  • 박병태;신동현
    • 한국공간구조학회논문집
    • /
    • 제23권4호
    • /
    • pp.89-96
    • /
    • 2023
  • The seismic retrofits of existing structures have been focused on the control of structural responses which can be achieved by providing displacement capacity through inelastic ductile action at supplemental devices. Due to their hysteretic characteristics, it is expected to sustain damage through repeated inelastic behaviors including residual deformation which might increase repair costs. To solve such drawbacks of existing yielding devices, this study proposes a self-centering disc spring brace that sustains large axial deformation without structural damage while providing stable energy dissipation capacity. The hysteretic behaviors of suggested brace are first investigated based on the quasi-static cyclic test procedure. Experimental results present the effective self-centering behavior and an analytical model is then suggested in order to reasonably capture the flag-shaped hysteretic behavior of the disc spring brace.

예비교사들의 원격 PBL 수업에서 몰입에 대한 흥미수준과 학습동기의 매개모형에 미치는 인식된 교육과정 과제난이도의 조절효과 탐색 (Exploring the Moderating Effect of Difficulty in Recognized Curriculum Task on the Mediator Model of Interesting and Learning Motivation on Flow in Distant PBL Classes of Pre-service Teachers)

  • 이은철
    • 한국콘텐츠학회논문지
    • /
    • 제21권2호
    • /
    • pp.594-603
    • /
    • 2021
  • 본 연구는 예비교사들의 원격 PBL 수업에서 학습자의 몰입에 대한 학습동기와 흥미의 영향을 인식된 과제 난이도가 조절효과를 가지는지 탐색하고자 수행되었다. 이를 위해서 선행연구 탐색을 통해서 연구모형을 구성하였다. 연구모형의 검증을 위해 교육과정 수업을 수강하는 사범학부 학생 105명을 대상으로 원격PBL을 운영하였다. 원격PBL은 실시간 화상 회의 시스템을 이용하여, 실시간으로 협업 활동을 수행하였다. 원격PBL 활동이 종료된 이후에, 학습동기, 흥미, 몰입, 과제난이도 인식 수준을 측정하였다. 수집된 자료는 구조방정식 모형을 이용한 집단 간 비교(test of the structural model invariance across the groups) 분석을 수행하여, 측정모형 간의 경로계수의 차이를 검증하여 과제난이도에 따른 조절효과를 검증하였다. 그 결과 몰입에 대한 학습동기의 영향을 흥미가 매개하는 것으로 나타났으며, 인식된 과제난이도 수준에 의해서 학습동기에서 흥미로 향하는 경로가 조절되는 것으로 나타났다.

치과용 임플란트 구조설계 (2): 시험설계 및 가공제작 (Structural Design of a Dental Implant (2): Test Drafting and Manufacturing)

  • 권영주
    • 한국전산구조공학회논문집
    • /
    • 제25권5호
    • /
    • pp.433-438
    • /
    • 2012
  • 본 논문은 두 편으로 구성된 치과용 임플란트 구조설계에 대한 논문 중 두 번째 논문으로 첫 번째 논문에서 구조해석 비교연구를 통하여 그 구조적 성능이 확인된 새로운 임플란트 구조모델에 대하여 시험 설계도면을 작성하여 완성하였으며, 이를 근거로 실제로 CNC 공작기계 등을 이용하여 임플란트를 가공 제작하고, 이를 평가함으로써 치과용 임플란트 구조 설계를 완성하였다. 설계도면 작업은 전용 Tool인 MDT를 이용하여 수행하였으며, 가공작업은 CNC 선반, 범용밀링머신, Wire EDM 등을 이용하여 수행하였다. 전자현미경을 이용하여 임플란트 표면의 가공 상태를 최종 평가 확인하였다. 평가 결과 매우 양호한 상태의 임플란트 시험제품을 설계 제작하였다.

핵연료집합체 기계적특성 시험시설 구축과 기능시험 (Construction and Functional Tests of Fuel Assembly Mechanical Characterization Test Facility)

  • 이강희;강흥석;윤경호;양재호
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.11-16
    • /
    • 2016
  • Fuel assembly's mechanical characterization test facility (FAMeCT) in KAERI was constructed with upgraded functional features such as increased loading capacity, underwater vibration testing and severe earthquake simulation for extended fuel design guideline. This facility is designed and developed to provide out-pile fuel data for accident analysis model and fuel licensing. Functional tests of FAMeCT were performed to confirm functionality, structural integrity, and validity of newly-built fuel assembly mechanical test facility. Test program includes signal check of data acquisition system, load delivering capacity using real-sized fuel assemblies and a standard loading cylindrical rigid specimen. Fuel assembly's lateral bending test was carried out up to 30 mm of pull-out displacement. Limit case axial compression loading test up to 33 kN was performed to check structural integrity of UCPS (Upper Core Plate Simulator) support frame. Test results show that all test equipment and measurement system have acceptable range of alignment, signal to noise ratio, load carrying capacity limit without loss of integrity. This paper introduces newly constructed fuel assembly's mechanical test facility and summarizes results of functional test for the mechanical test equipment and data acquisition system.

Finite element model calibration of a steel railway bridge via ambient vibration test

  • Arisoy, Bengi;Erol, Osman
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.327-335
    • /
    • 2018
  • This paper presents structural assessment of a steel railway bridge for current condition using modal parameter to upgrade finite element modeling in order to gather accurate result. An adequate monitoring, such as acceleration, displacement, strain monitoring, is important tool to understand behavior and to assess structural performance of the structure under surround vibration by means of the dynamic analysis. Evaluation of conditions of an existing steel railway bridge consist of 4 decks, three of them are 14 m, one of them is 9.7 m, was performed with a numerical analysis and a series of dynamic tests. Numerical analysis was performed implementing finite element model of the bridge using SAP2000 software. Dynamic tests were performed by collecting acceleration data caused by surrounding vibrations and dynamic analysis is performed by Operational Modal Analysis (OMA) using collected acceleration data. The acceleration response of the steel bridge is assumed to be governing response quantity for structural assessment and provide valuable information about the current statute of the structure. Modal identification determined based on response of the structure play significant role for upgrading finite element model of the structure and helping structural evaluation. Numerical and experimental dynamic properties are compared and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. In this paper, an existing steel railway bridge with four spans is evaluated by finite element model improved using operational modal analysis. Structural analysis performed for the bridge both for original and calibrated models, and results are compared. It is demonstrated that differences in natural frequencies are reduced between 0.2% to 5% by calibrating finite element modeling and stiffness properties.

Numerical investigations on stability evaluation of a jointed rock slope during excavation using an optimized DDARF method

  • Li, Yong;Zhou, Hao;Dong, Zhenxing;Zhu, Weishen;Li, Shucai;Wang, Shugang
    • Geomechanics and Engineering
    • /
    • 제14권3호
    • /
    • pp.271-281
    • /
    • 2018
  • A jointed rock slope stability evaluation was simulated by a discontinuous deformation analysis numerical method to investigate the process and safety factors for different crack distributions and different overloading situations. An optimized method using Discontinuous Deformation Analysis for Rock Failure (DDARF) is presented to perform numerical investigations on the jointed rock slope stability evaluation of the Dagangshan hydropower station. During the pre-processing of establishing the numerical model, an integrated software system including AutoCAD, Screen Capture, and Excel is adopted to facilitate the implementation of the numerical model with random joint network. These optimizations during the pre-processing stage of DDARF can remarkably improve the simulation efficiency, making it possible for complex model calculation. In the numerical investigations on the jointed rock slope stability evaluations using the optimized DDARF, three calculation schemes have been taken into account in the numerical model: (I) no joint; (II) two sets of regular parallel joints; and (III) multiple sets of random joints. This model is capable of replicating the entire processes including crack initiation, propagation, formation of shear zones, and local failures, and thus is able to provide constructive suggestions to supporting schemes for the slope. Meanwhile, the overloading numerical simulations under the same three schemes have also been performed. Overloading safety factors of the three schemes are 5.68, 2.42 and 1.39, respectively, which are obtained by analyzing the displacement evolutions of key monitoring points during overloading.

홀로식사와 대사증후군의 관련성: 구조방정식 모형을 이용한 위험요인 분석 (Association between Eating Alone and Metabolic Syndrome: A Structural Equation Modeling Approach)

  • 송수연;정윤희
    • 대한영양사협회학술지
    • /
    • 제25권2호
    • /
    • pp.142-155
    • /
    • 2019
  • The aim of this study was to construct and test a structural equation model for the risk factors of metabolic syndrome in Korean adults. The structural equation model hypothesizes that eating alone and feeling depressed is a risk factor for metabolic syndrome. The data of this study were obtained from the Sixth Korea National Health and Nutrition Examination Survey which was cross-sectional data from the representative national survey. A total of 4,013 subjects replied to the survey item of lifestyle and completed the physical examinations among adults aged 19 years or older in South Korea was in 2015. The structural model in this study was composed of four latent variables: eating alone, depression, negative health behavior, and metabolic syndrome. Two variables, the rate of eating alone and depression, were exogenous variables. Negative health behavior was both a mediating variable and endogenous variable, and metabolic syndrome was the final endogenous variable. The data were analyzed using the Maximum Likelihood method and bootstrapping. The structural model was appropriate for the data based on the model fit indices. The results of this study can be summarized as follows: Eating alone is a direct risk factor of metabolic syndrome in Korean women. Depression can mediate metabolic syndrome through negative health behaviors. Negative health behavior had a direct impact on metabolic syndrome in both men and women. This study may be a guideline for interventions and strategies to reduce the incidence of metabolic syndrome in Korean adults.