• 제목/요약/키워드: Structural MRI

검색결과 111건 처리시간 0.028초

승모판 역류 In-Vitro 모델을 활용한 초음파 및 4D flow MRI 기반 혈류 정량화 비교연구 (In-Vitro Model Design of Mitral Valve Regurgitation and Comparative Study of Quantification between PISA and 4D flow MRI)

  • 이주연;권민성;허형규
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.40-48
    • /
    • 2024
  • This study presents an in-vitro model designed to simulate mitral valve regurgitation, aiming to compare the quantification results between Proximal Isovelocity Surface Area(PISA) and 4D Flow MRI on both fixed and valve annulus tracking(VAT) views. The in-vitro model replicates the dynamic conditions of the mitral valve in a pulsatile environment, utilizing a piston pump set at 60 bpm. Through systematic experiments and analysis, the study evaluates the accuracy and effectiveness of PISA and 4D Flow MRI in assessing regurgitation severity, considering both fixed and valve annulus tracking. The displacement length measured in echo closely resembled that of optical measurements, making it advantageous for structural analysis. VAT-4D flow MRI exhibited the smallest deviation from actual flow rate values, establishing it as most accurate method for quantitative regurgitation assessment.

Clinical outcomes of traumatic brain injury dogs underwent CT or MRI

  • Unghui Kim;Woo-Jin Song
    • 한국동물위생학회지
    • /
    • 제47권2호
    • /
    • pp.101-105
    • /
    • 2024
  • Three dogs (7-year-old, neutered male Chihuahua; case 1, 1-year-old, spayed female mixed breed; case 2, 10-month-old, female Maltese; case 3) were referred to Jeju Veterinary Medicine Teaching Hospital for traumatic brain injury. All three patients exhibited abnormal neurological symptoms. The patients were diagnosed through medical history obtained from their caregivers and through computed tomography (CT) or magnetic resonance imaging (MRI) scans. Structural brain abnormalities were observed in two dogs through CT scans and in one dog through MRI. Decompression therapy with mannitol was administered to all three dogs. Case 1, which showed CT findings of pulmonary hemorrhage but no significant brain injury, and case 2, which had mild brain damage on CT imaging, showed improvement in neurological symptoms and gait abnormalities after decompression therapy. However, case 3, which showed suspected brain hemorrhage and brain edema on MRI, did not respond to decompression therapy and was euthanized one month later. Imaging evaluation through CT or MRI in dogs with traumatic brain injury can assist clinical veterinarians in assessing the prognosis of patients.

An ADHD Diagnostic Approach Based on Binary-Coded Genetic Algorithm and Extreme Learning Machine

  • Sachnev, Vasily;Suresh, Sundaram
    • Journal of Computing Science and Engineering
    • /
    • 제10권4호
    • /
    • pp.111-117
    • /
    • 2016
  • An accurate approach for diagnosis of attention deficit hyperactivity disorder (ADHD) is presented in this paper. The presented technique efficiently classifies three subtypes of ADHD (ADHD-C, ADHD-H, ADHD-I) and typically developing control (TDC) by using only structural magnetic resonance imaging (MRI). The research examines structural MRI of the hippocampus from the ADHD-200 database. Each available MRI has been processed by a region-of-interest (ROI) to build a set of features for further analysis. The presented ADHD diagnostic approach unifies feature selection and classification techniques. The feature selection technique based on the proposed binary-coded genetic algorithm searches for an optimal subset of features extracted from the hippocampus. The classification technique uses a chosen optimal subset of features for accurate classification of three subtypes of ADHD and TDC. In this study, the famous Extreme Learning Machine is used as a classification technique. Experimental results clearly indicate that the presented BCGA-ELM (binary-coded genetic algorithm coupled with Extreme Learning Machine) efficiently classifies TDC and three subtypes of ADHD and outperforms existing techniques.

Fabrication of a Staircase Coil with Improved SNR and Image Uniformity by Structural Changes of a Conventional Birdcage Coil at 1.5T MRI

  • Ryang, Kyung-Seung;Shin, Yong-Jin
    • 한국자기공명학회논문지
    • /
    • 제7권1호
    • /
    • pp.25-36
    • /
    • 2003
  • The performance of radio frequency (RF) coils, used in MRI units, is determined by the image uniformity and the signal-to-noise ratio (SNR). Birdcage and surface coils are commonly used. A birdcage coil provides a good image uniformity while a surface coil produces a high SNR. In this study, therefore, a staircase coil was designed from a standard version of a birdcage coil, with some structural changes to increase SNR while maintaining image uniformity. In phantom experiments, the improvement of the image to uniformity and the SNR increase of the staircase coil compared with the values for the birdcage coil were about 3.5% and 35%, respectively. In clinical experiment, the SNR increase of the staircase coil, compared with the value for the birdcage coil was about 40% in bone, muscle and blood-vessel tissues. These results show that the performance of the staircase coil was very improved over the standard birdcage coil in terms of SNR, and that image uniformity was maintained. Therefore, the staircase coil designed by this study should be useful in experimental and clinical l.5T MRI systems, and this coil offers an alternative method of quadrature detection.

  • PDF

Multi-biomarkers-Base Alzheimer's Disease Classification

  • Khatri, Uttam;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • 제8권4호
    • /
    • pp.233-242
    • /
    • 2021
  • Various anatomical MRI imaging biomarkers for Alzheimer's Disease (AD) identification have been recognized so far. Cortical and subcortical volume, hippocampal, amygdala volume, and genetics patterns have been utilized successfully to diagnose AD patients from healthy. These fundamental sMRI bio-measures have been utilized frequently and independently. The entire possibility of anatomical MRI imaging measures for AD diagnosis might thus still to analyze fully. Thus, in this paper, we merge different structural MRI imaging biomarkers to intensify diagnostic classification and analysis of Alzheimer's. For 54 clinically pronounce Alzheimer's patients, 58 cognitively healthy controls, and 99 Mild Cognitive Impairment (MCI); we calculated 1. Cortical and subcortical features, 2. The hippocampal subfield, amygdala nuclei volume using Freesurfer (6.0.0) and 3. Genetics (APoE ε4) biomarkers were obtained from the ADNI database. These three measures were first applied separately and then combined to predict the AD. After feature combination, we utilize the sequential feature selection [SFS (wrapper)] method to select the top-ranked features vectors and feed them into the Multi-Kernel SVM for classification. This diagnostic classification algorithm yields 94.33% of accuracy, 95.40% of sensitivity, 96.50% of specificity with 94.30% of AUC for AD/HC; for AD/MCI propose method obtained 85.58% of accuracy, 95.73% of sensitivity, and 87.30% of specificity along with 91.48% of AUC. Similarly, for HC/MCI, we obtained 89.77% of accuracy, 96.15% of sensitivity, and 87.35% of specificity with 92.55% of AUC. We also presented the performance comparison of the proposed method with KNN classifiers.

One Step Measurements of hippocampal Pure Volumes from MRI Data Using an Ensemble Model of 3-D Convolutional Neural Network

  • Basher, Abol;Ahmed, Samsuddin;Jung, Ho Yub
    • 스마트미디어저널
    • /
    • 제9권2호
    • /
    • pp.22-32
    • /
    • 2020
  • The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also one of the most important early biomarkers for Alzheimer's disease detection. The measurements of hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art methods require a large amount of time. In addition, the structural brain development is investigated using MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The quantitative study on the predicted volumes over the ground truth volumes shows that the proposed approach can be used as a proxy.

제5 중족골 근위부 골절 환자의 자기공명영상 검사를 통한 족관절 외측 불안정성 평가의 기여도 (Contribution of Lateral Ankle Instability Evaluation with MRI to Proximal Fifth Metatarsal Fracture)

  • 유종민;주인탁;이규조
    • 대한족부족관절학회지
    • /
    • 제14권2호
    • /
    • pp.119-122
    • /
    • 2010
  • Purpose: One of the main contributors to proximal fifth metatarsal fracture is ankle inversion and the incidence of recurrence may increase in patients with ankle instability. So, the authors confirmed the patients of proximal fifth metatarsal fracture with ankle instability by checking the history and magnetic resonance imaging (MRI) and assessed the value of MRI as therapeutic prognosis and clinical indicators for prevention of recurrence. Materials and Methods: Patients with proximal fifth metatarsal fractures visited our hospital during recent five years were reviewed. 35 patients with suspected damage by ankle inversion had been identified a history of ankle instability and checked the hindfoot malalignment through hindfoot alignment view and MRI was performed prospectively. The patients was devided to three groups on the location of fracture site and the groups were compared each other. Results: The mean time from injury to checking MRI was 10.7 days. There was no structural abnormality and was no significant difference according to the location of fracture. The patients with history of ankle inversion were 31(88.6%) and the patients with history of chronic or recurrent injury were 22 patients (62.9%). The lesion of MRI related to lateral ankle instability were identified in all patients. Conclusion: This study noted a high incidence of lateral ankle instability that was identified by MRI in the patients of proximal fifth metatarsal fracture. Aggressive treatment for lateral ankle instability should be needed for complications as proximal fifth metatarsal fracture to reduce the recurrence and occurrence.

핵의학 융합영상의 표준섭취계수 차이에 관한 연구 (Study on the Difference of Standardized Uptake Value in Fusion Image of Nuclear Medicine)

  • 김정수;박찬록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권6호
    • /
    • pp.553-560
    • /
    • 2018
  • PET-CT and PET-MRI which integrates CT using ionized radiation and MRI using phenomena of magnetic resonance are determined to have the limitation to apply the semi-quantitative index, standardized uptake value (SUV), with the same level due to the fundamental differences of image capturing principle and reorganization, hence, their correlations were analyzed to provide their clinical information. To 30 study subjects maintaining pre-treatment, $^{18}F-FDG$ (5.18 MBq/㎏) was injected and they were scanned continuously without delaying time using $Biograph^{TM}$ mMR 3T (Siemens, Munich) and Biograph mCT 64 (Siemens, Germany), which is an integral type, under the optimized condition except the structural differences of both scanners. Upon the measurement results of $SUV_{max}$ setting volume region of interest with evenly distributed radioactive pharmaceuticals by captured images, $SUV_{max}$ mean values of PET-CT and PET-MRI were $2.94{\pm}0.55$ and $2.45{\pm}0.52$, respectively, and the value of PET-MRI was measured lower by $-20.85{\pm}7.26%$ than that of PET-CT. Also, there was a statistically significant difference in SUVs between two scanners (P<0.001), hence, SUV of PET-CT and PET-MRI cannot express the clinical meanings in the same level. Therefore, in case of the patients who undergo cross follow-up tests with PET-CT and PET-MRI, diagnostic information should be analyzed considering the conditions of SUV differences in both scanners.

Multiparametric Functional Magnetic Resonance Imaging for Evaluating Renal Allograft Injury

  • Yuan Meng Yu;Qian Qian Ni;Zhen Jane Wang;Meng Lin Chen;Long Jiang Zhang
    • Korean Journal of Radiology
    • /
    • 제20권6호
    • /
    • pp.894-908
    • /
    • 2019
  • Kidney transplantation is the treatment of choice for patients with end-stage renal disease, as it extends survival and increases quality of life in these patients. However, chronic allograft injury continues to be a major problem, and leads to eventual graft loss. Early detection of allograft injury is essential for guiding appropriate intervention to delay or prevent irreversible damage. Several advanced MRI techniques can offer some important information regarding functional changes such as perfusion, diffusion, structural complexity, as well as oxygenation and fibrosis. This review highlights the potential of multiparametric MRI for noninvasive and comprehensive assessment of renal allograft injury.

두정엽 및 후두엽 간질에 대한 수술전략 (Surgical Strategy of Epilepsy Arising from Parietal and Occipital Lobes)

  • 심병수;최하영
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권2호
    • /
    • pp.222-230
    • /
    • 2000
  • Purpose : Resection of the epileptogenic zone in the parietal and occipital lobes may be relevant although only few studies have been reported. Methods : Eight patients with parietal epilepsy and nine patients with occipital epilepsy were included for this study. Preoperatively, all had video-EEG monitoring with extracranial electrodes, MRI, 3D-surface rendering of MRI using Allegro(ISG Technologies Inc., Toronto, Canada), and PET scans. Sixteen patients underwent invasive recording with subdural grid. Eight had parietal resection including the sensory cortex in two. Seven had partial occipital resection. Two underwent total unilateral occipital lobectomy. The extent of the resection was made based mainly on the data of invasive EEG recordings, MRI, and 3D-surface rendering of MRI, not on the intraoperative electrocorticographic findings as usually done. During resection, electrocortical stimulation was performed on the motor cortex and speech area. Results : Out of eight patients with parietal epilepsy, three had sensory aura, two had gustatory aura, and two had visual aura. Six of nine patients with occipital epilepsy had visual auras. All had complex partial seizures with lateralizing signs in 15 patients. Four had quadrantopsia. One had mild right hemiparesis. Abnormality in MRI was noticed in six out of eight parietal epilepsy and in eight out of nine occipital epilepsy. 3D-surface rendering of MRI visualized volumetric abnormality with geometric spatial relationships adjacent to the normal brain, in all of parietal and occipital epilepsy. Surface EEG recording was not reliable in localizing the epileptogenic zone in any patient. The subdural grid electrodes can be implanted on the core of the structural abnormality in 3D-reconstructed brain. Ictal onset zone was localized accurately by subdural grid EEGs in 16 patients. Motor cortex in nine and sensory speech area in two were identified by electrocortical stimulation. Histopathologic findings revealed cortical dysplasia in 10 patients ; tuberous sclerosis was combined in two, hamartoma and ganglioglioma in one each, and subpial gliosis in six. Eleven patients were seizure free at follow-up of 6 months to 37 months(mean 19.7 months) after surgery. Seizures recurred in two and were unchanged in one. Six produced transient sensory loss and one developed hemiparesis and tactile agnosia. One revealed transient apraxia. Two patients with preoperative quadrantopsia developed homonymous hemianopsia. Conclusion : This study suggests that surgical treatment was relevant in parietal and occipital epilepsies with good surgical outcome, without significant neurologic sequelae. Neuroimaging studies including conventional MRI, 3Dsurface rendering of MRI were necessary in identifying the epileptogenic zone. In particular, 3D-surface rendering of MRI was very helpful in presuming the epileptogenic zone in patients with unidentifiable lesion in the conventional MRI, in planning surgical approach to lesions, and also in making a decision of the extent of the epileptogenic zone in patients with identifiable lesion in conventional MRI. Invasive EEG recording with the subdural grid electrodes helped to confirm a core of the epileptogenic zone which was revealed in 3D-surface rendered brain.

  • PDF