Browse > Article
http://dx.doi.org/10.17946/JRST.2018.41.6.553

Study on the Difference of Standardized Uptake Value in Fusion Image of Nuclear Medicine  

Kim, Jung-Soo (Department of Radiological Technology, Dongnam Health University)
Park, Chan-Rok (Department of Nuclear Medicine, Seoul National University Hospital)
Publication Information
Journal of radiological science and technology / v.41, no.6, 2018 , pp. 553-560 More about this Journal
Abstract
PET-CT and PET-MRI which integrates CT using ionized radiation and MRI using phenomena of magnetic resonance are determined to have the limitation to apply the semi-quantitative index, standardized uptake value (SUV), with the same level due to the fundamental differences of image capturing principle and reorganization, hence, their correlations were analyzed to provide their clinical information. To 30 study subjects maintaining pre-treatment, $^{18}F-FDG$ (5.18 MBq/㎏) was injected and they were scanned continuously without delaying time using $Biograph^{TM}$ mMR 3T (Siemens, Munich) and Biograph mCT 64 (Siemens, Germany), which is an integral type, under the optimized condition except the structural differences of both scanners. Upon the measurement results of $SUV_{max}$ setting volume region of interest with evenly distributed radioactive pharmaceuticals by captured images, $SUV_{max}$ mean values of PET-CT and PET-MRI were $2.94{\pm}0.55$ and $2.45{\pm}0.52$, respectively, and the value of PET-MRI was measured lower by $-20.85{\pm}7.26%$ than that of PET-CT. Also, there was a statistically significant difference in SUVs between two scanners (P<0.001), hence, SUV of PET-CT and PET-MRI cannot express the clinical meanings in the same level. Therefore, in case of the patients who undergo cross follow-up tests with PET-CT and PET-MRI, diagnostic information should be analyzed considering the conditions of SUV differences in both scanners.
Keywords
PET-CT; PET-MRI; Standardized Uptake Value; Attenuation Correction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Quick HH, von Gall C, Zeilinger M, Wiesmuller M, Braun H, Ziegler S, et al. Integrated whole-body PET/MR hybrid imaging: clinical experience. Invest Radiol. 2013;48(5):280-9.   DOI
2 Pujara AC, Raad RA, Ponzo F, Wabong C, Babb JS, Moy L, et al. Standardized uptake values from PET/MRI in metastatic breast cancer: an organ- based comparison with PET/CT. 2016;22(3): 264-73.   DOI
3 Kershah S, Partovi S, Traughber BJ, Muzic RF Jr, Schluchter MD, O'Donnell JK, et al. Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in an oncology patient population. Mol Imaging Biol. 2013;15(6): 776-85.   DOI
4 Ruhlmann V, Ruhlmann M, Bellendorf A, Grueneisen J, Sawicki LM, Grafe H, et al. Hybrid imaging for detection of carcinoma of unknown primary: a p reliminary comparis on t rial o f whole-body PET/MRI versus PET/CT. Eur J Radiol. 2016;85(11):1941-7.   DOI
5 Grueneisen J, Sawicki LM, Wetter A, Kirchner J, Kinner S, Aktas B, et al. Evaluation of PET and MR datasets in integrated $^{18}F$-FDG PET/MRI: a comparison of different MR sequences for whole-body restaging of breast cancer patients. Eur J Radiol. 2017;89:14-9.   DOI
6 Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, et al. Performance measurements of the siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1-9.   DOI
7 Sachpekidis C, Hillengab J, Goldschmidt H, Mosebach J, Pan L, et al. Comparison of $^{18}F$-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging. 2015; 5(5):469-78.
8 Khalaf M, Abdel-Nabi H, Baker J, Shao Y, Lamonica D, Gona J. Relation between nodule size and $^{18}F$-FDG-PET SUV for malignant and benign pulmonary nodules. J Hematol Oncol. 2008;1:13.   DOI
9 Partovi S, Kohan A, Vercher-Conejero JL, Rubbert C, Margevicius S, Schluchter MD, et al. Qualitative and quantitative performance of $^{18}F$-FDG-PET/MRI versus $^{18}F$-FDG-PET/CT in patients with head and neck cancer. Am J Neuroradiol. 2014;35(10):1970-5.   DOI
10 Freitag MT, Fenchel M, BCumer P, Heuber T, Rank CM, Kachelrieb M, et al. Improved clinical workflow for simultaneous whole-body PET/MRI using high-resolution CAIPIRINHA-accelerated MR-based attenuation correction. Eur J Radiol. 2017;96:12-20.   DOI
11 Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(1):11-20.   DOI
12 Rakheja R, Chandarana H, DeMello L, Jackson K, Geppert C, Faul D, et al. Correlation between standardized uptake value and apparent diffusion coefficient of neoplastic lesions evaluated with whole-body simultaneous hybrid PET/MRI. Am J Roentgenol. 2013;201(5):1115-9.   DOI
13 Schwenzer NF, Schmidt H, Gatidis S, Brendle C, Muller M, Knigsrainer I, et al. Measurement of apparent diffusion coefficient with simultaneous MR/positron emibion tomography in patients with peritoneal carcinomatosis: c omparis on with $^{18}F$-FDG-PET. J Magn Reson Imaging. 2014;40(5): 1121-8.   DOI
14 Muzic RF, DiFilippo Jr FP. PET/MRI-technical review. Semin Roentgenol. 2014;49(3):242-54.   DOI
15 Tsubakimoto M, Yamashiro T, Tamashiro Y, Murayama S. Quantitative CT density histogram values and standardized uptake values of FDGPET/ CT with respiratory gating can distinguish solid adenocarcinomas from squamous cell carcinomas of the lung. Radiology. 2018;100:108-15.
16 Ziai P, Hayeri MR, Salei A, Salavati A, Houshmand S, Alavi A. Role of optimal quantification of FDG PET imaging in the clinical practice of radiology. RadioGraphics. 2016;36:481-96.   DOI
17 Buchbender C, Hartung-Knemeyer V, Forsting M, Antoch G, Heusner TA. Positron emibion tomography (PET) attenuation correction artefacts in PET/CT and PET/MRI. Br J Radiol. 2013;86(1025):20120570.   DOI
18 Awan MJ, Siddiqui F, Schwartz D, Yuan J, Machtay M, Yao M. Application of positron emibion tomography/ computed tomography in radiation treatment planning for head and neck cancers. World J Radiol. 2015;7(11):382-93.   DOI
19 Salem U, Amini B, Chuang HH, Daw NC, Wei W, et al. $^{18}F$-FDG PET/CT as an indicator of survival in ewing sarcoma of bone. J Cancer. 2017;8(15): 2892-8.   DOI
20 Tsuyoshi H, Yoshida Y. Diagnostic imaging using positron emibion tomography for gynecological malignancy. J Obstet Gynaecol Res. 2017;43(11): 1687-99.   DOI
21 Giraudo C, Raderer M, Karanikas G, Weber M, Kiesewetter B, Dolak W, et al. $^{18}F$-fluorodeoxyglucose positron emibion tomography/magnetic resonance in lymphoma: comparison with $^{18}F$-fluorodeoxyglucose positron emibion tomography/computed tomography and with the addition of magnetic resonance diffusion-weighted imaging. Invest Radiol. 2016;51(3):163-9.   DOI
22 Cho N, Im SA, Cheon GJ, Park IA, Lee KH, Kim TY, et al. Integrated $^{18}F$-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2018;45(3):328-39.   DOI
23 Rouzet F, Aerts J, Hyafil F, Guludec DL. New-generation CZT cameras: the future of infection imaging? Eur Hear J. 2017;38:444-6.   DOI
24 Rubini G. Nuclear medicine: the future in the modern healthcare. Clin Oncol. 2017;2:1271.
25 Lee MS, Cho JY, Kim SY, Cheon GJ, Moon MH, Oh S, et al. Diagnostic value of integrated PET/MRI for detection and localization of prostate cancer: comparative study of multiparametric MRI and PET/CT. J Magn Reson Imaging. 2017;45(2):597-609.   DOI
26 Piert M, Montgomery J, Kunju LP, Siddiqui J, Rogers V, Rajendiran T, et al. $^{18}F$-choline PET/MRI: the additional value of PET for MRI-guided transrectal prostate biopsies. J Nucl Med. 2016;57(7):1065-70.   DOI
27 Radtke JP, Schwab C, Wolf MB, Freitag MT, Alt CD, Kesch C, et al. Multiparametric magnetic resonance imaging (MRI) and MRI-transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. Eur Urol. 2016;70(5):846-53.   DOI
28 Hong CM, Ahn BC. Can calcified pulmonary metastases detected by (18)F-FDG PET/CT suggest the primary tumor? Hell J Nucl Med. 2016;19(1):10-2.
29 Cho N, Im SA, Kang KW, Park IA, Song IC, Lee KH, et al. Early prediction of response to neoadjuvant chemotherapy in breast cancer patients: comparison of single-voxel (1)H-magnetic resonance spectroscopy and (18)F-fluorodeoxyglucose positron emibion tomography. Eur Radiol. 2016;26(7):2279-90.   DOI
30 Frank Schelper L, Oeri M, Buchmann I. Accuracy of a topical PET/CT scanner on SUV measurements of small volumes SUV. Curr Med Img Rev. 2015;11(4):262-71.   DOI
31 Jang DG, Yang SO, Lee SH, Bae JL, Kim JK. Characteristic of $^{18}F$-FDG excretion according to use diuretics in $^{18}F$-FDG of PET-CT. J Radiol Sci Technol. 2012;35(2):151-6.
32 Kim TH, Ji YB, Song CM, Kim JY, Choi YY, Park JS, et al. SUVmax of $^{18}F$-FDG PET/CT in the differential diagnosis of benign and malignant thyroid nodules according to tumor volume. World J Surg Oncol. 2015;16(13):217.
33 Araz M, Cayir D. $^{18}F$-fluorodeoxyglucose-positron emibion tomography/computed tomography for other thyroid cancers: medullary, anaplastic, lymphoma and so forth. Mol Imaging Radionucl Ther. 2017;26(1):1-8.
34 Shin GS, Dong KR. The Difference of standardized uptake value on PET-CT according to change of CT parameters. J Radiol Sci Technol. 2007;30(4):373-9.
35 Lyons K, Seghers V, Sorensen JI, Zhang W, Paldino MJ, Krishnamurthy R, et al. Comparison of standardized uptake values in normal structures between PET/CT and PET/MRI in a tertiary pediatric hospital: a prospective study. AJR Am J Roentgenol. 2015;205(5):1094-101.   DOI
36 Pace L, Nicolai E, Luongo A, Aiello M, Catalano OA, Soricelli A, et al. Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of $^{18}F$-deoxyglucose uptake in lesions and in normal organ tibues. Eur J Radiol. 2014;83(2):289-96.   DOI
37 Robertson MS, Liu X, Plishker W, Zaki GF, Vyas PK, Safdar NM, et al. Software-based PET-MR image coregistration: combined PET-MRI for the rest of us! Pediatr Radiol. 2016;46(11):1552-61.   DOI