• Title/Summary/Keyword: Structural Join

Search Result 47, Processing Time 0.023 seconds

Structural Semi-Join Operators for Efficient Path Processing in XML Databases (XML 데이터베이스에서 효율적인 경로처리를 위한 구조적 세미조인 기법)

  • Son, Seok-Hyun;Shin, Hyo-Seop
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.2
    • /
    • pp.252-256
    • /
    • 2010
  • The structural join is one of core operators for efficient processing of XML queries. It can be mainly used for path-represented XML queries as it efficiently retrieves the node pairs that form a hierarchical relationship (i.e., ancestor-descendant, Parent-child relationship) among large-scale XML nodes. However, the structural join algorithms still suffer potential overhead in the middle of processing of XML path queries. In addressing this problem, the structural semi-join is proposed as a novel operator that retrieves only the ancestor or descendant nodes as join results for efficient processing. In this paper, we describe the algorithms for the structural semi-join and present the methods of XML path processing based on the structural semi-join algorithms. The experimental results show that the structural semi-join algorithms are very efficient in processing XML path processing.

Segment Join Technique for Processing in Queries Fast (빠른 XML질의 처리를 위한 세그먼트 조인 기법)

  • ;Moon Bongki;Lee Sukho
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.334-343
    • /
    • 2005
  • Complex queries such as path alld twig patterns have been the focus of much research on processing XML data. Structural join algorithms use a form of encoded structural information for elements in an XML document to facilitate join processing. Recently, structural join algorithms such as Twigstack and TSGeneric- have been developed to process such complex queries, and they have been shown that the processing costs of the algorithms are linearly proportional to the sum of input data. However, the algorithms have a shortcoming that their processing costs increase with the length of a queery. To overcome the shortcoming, we propose the segment join technique to augment the structural join with structural indexes such as the 1-Index. The SegmentTwig algorithm based on the segment join technique performs joins between a pair of segments, which is a series of query nodes, rather than joins between a pair of query nodes. Consequently, the query can be processed by reading only a query node per segment. Our experimental study shorts that segment join algorithms outperform the structural join methods consistently and considerably for various data sets.

Effective Structural Joins using Level Information (레벨 정보를 이용한 효과적인 구조 조인 기법)

  • Kim, Jong-Ik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.582-587
    • /
    • 2008
  • Structural join is one of the most typical techniques for evaluating XML path queries. Recent researches for structural joins focus on techniques of skipping unnecessary elements using the horizontal distribution information of elements that is indexed on a structure like B+ tree. However, those techniques make the structural join complicated and cannot guarantee efficient join processing due to the overhead of an index structure. In this paper, we propose a new structural join technique that exploits the level information of XML elements. Our technique can skip unnecessary elements using level information, which is vertical distribution information of elements. Through the experimental results, we show that our technique can evaluate structural joins efficiently.

Efficient Structural Join Technique using the Level Information of Indexed XML Documents (색인된 XML 문서에서 레벨 정보를 이용한 효과적인 구조 조인 기법)

  • Lee Yunho;Choi Ilhwan;Kim Jongik;Kim Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.32 no.6
    • /
    • pp.641-649
    • /
    • 2005
  • As XML is widely used with the development of internet, many researches on the XML storage and query processing have been done Several index techniques have been proposed to efficiently process XML path queries. Recently, structural join has received murk attention as a method to protest the path query. Structural join technique process a path query by identifying the containment relationship of elements. Especially, it has an advantage that we can get the result set by simply comparing related elements only instead of scanning whole document. However during the comparison process, unnecessary elements that are not included in the result set can be scanned. So we propose a new technique, the level structural join. In this technique, we use both the relationship and the level distribution of elements in the path query. Using this technique, we tao improve the performance of query processing only by comparing elements with specific level in the target inverted level.

A Multi-level Inverted Index Technique for Structural Document Search (구조화 문서 검색을 위한 다단계 역색인 기법)

  • Kim, Jong-Ik
    • The KIPS Transactions:PartB
    • /
    • v.15B no.4
    • /
    • pp.355-364
    • /
    • 2008
  • In general, we can use an inverted index for retrieving element lists from structured documents. An inverted index can retrieve a list of elements that have the same tag name. In this approach, however, the cost of query processing is linear to the length of a path query because all the structural relationships (parent-child and ancestor-descendant) should be resolved by structural join operations. In this paper, we propose an inverted index technique and a novel structural join technique for accelerating XML path query evaluation. Our inverted index can retrieve element lists for path segments in a parent-child relationship. Our structural join technique can handle lists of element pairs while the existing techniques handle lists of elements. We show through experiments that these two proposed techniques are integrated to accelerate evaluation of XML path queries.

An Efficient Path Expression Join Algorithm Using XML Structure Context (XML 구조 문맥을 사용한 효율적인 경로 표현식 조인 알고리즘)

  • Kim, Hak-Soo;Shin, Young-Jae;Hwang, Jin-Ho;Lee, Seung-Mi;Son, Jin-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.605-614
    • /
    • 2007
  • As a standard query language to search XML data, XQuery and XPath were proposed by W3C. By widely using XQuery and XPath languages, recent researches focus on the development of query processing algorithm and data structure for efficiently processing XML query with the enormous XML database system. Recently, when processing XML path expressions, the concept of the structural join which may determine the structural relationship between XML elements, e.g., ancestor-descendant or parent-child, has been one of the dominant XPath processing mechanisms. However, structural joins which frequently occur in XPath query processing require high cost. In this paper, we propose a new structural join algorithm, called SISJ, based on our structured index, called SI, in order to process XPath queries efficiently. Experimental results show that our algorithm performs marginally better than previous ones. However, in the case of high recursive documents, it performed more than 30% by the pruning feature of the proposed method.

Estimating Join Selectivity of Global XQuery Queries in Distributed Environments (분산 환경에서 전역 XQuery 질의의 조인 선택치 추정 방법)

  • Park, Jong-Hyun;Kang, Ji-Hoon
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.564-571
    • /
    • 2007
  • One of the methods for integrating XML data in distributed environments is using XML view. User can query toward distributed local XML views by using global XQuery queries in XQuery which is a standard query language for searching XML data. The global XQuery queries naturally contain join operations because of integrating and searching distributed heterogeneous data. Since join operations are generally expensive for processing a query, its processing technique is very important for efficient processing of global XQuery queries. Therefore there are some studies on the efficient processing of join operations and one of these studies is that selects minimum join cost by estimating a join selectivity. In case of SQL, there are already some researches for estimating a join selectivity and join cost of global SQL queries. However we can not apply their methods for estimating the selectivity of join operations in SQL queries into XQuery queries because of the structural difference between relational data and XML data. Therefore this paper proposes a method for estimating a selectivity of join operations in XQuery queries using the information of XML views. Our contribution is three threefold. First, we define the difference point for estimating join selectivity between SQL and XQuery. Second, we estimate join selectivity in XQuery queries by referring XML views. Third, we evaluate our estimating method.

Intelligent PID Controller and its application to Structural Vibration Mitigation with MR Damper (지적 PID제어를 이용한 구조적 진동의 완화)

  • Choe, Wook-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1224-1230
    • /
    • 2015
  • This paper is concerned with applicability of intelligent PID controller which is proposed by Fliss and Join recently. First, we analyze the stability regions of intelligent PID control systems when parameter α is varying, and propose a new method to determine the suitable range of α by using the roots locus. Second, the simulation study of magneto-rheological (MR) damper to the structural vibrations due to earthquakes is presented to verify the effectiveness of the intelligent PID control method.

EP2 Labeling Scheme for XML Data (XML 데이타를 위한 EP2 레이블링 스킴)

  • 진주용;배진욱;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.79-81
    • /
    • 2004
  • 범위 기반 레이블링 스킴(range-based labeling scheme)을 이용하면 임의의 두 노드에 대한 조상-자손 관계를 쉽게 판별할 수 있으므로, XPath나 XQuery 형태의 질의를 효율적으로 처리할 수 있다. 그러나 노드의 삽입이 일어나는 동적인 상황에서는 불가피하게 전체 또는 일부의 레이블을 다시 할당(re-labeling)할 가능성이 있다는 문제점이 있다. 본 논문에서는 Dietz 레이블링 스킴을 개선한 EP2(extended preorder & postorder) 레이블링 스킴을 제안한다. 제안하는 스킴은 동일한 저장 공간상에서 범위 기반 레이블링 스킴에 비해 동적인 갱신에 유리하며, 기존의 구조 조인 알고리즘(structural join algorithm)을 이용하여 효율적으로 구조 질의(structural query)를 처리할 수 있다.

  • PDF

Estimation of production length of PC beam by using splice length of bottom rebar (하부철근 이음길이에 따른 PC 보 제작 길이 산정)

  • Sung, Soojin;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.84-85
    • /
    • 2014
  • Green frame is column-beam structure composed of precast concrete members. Based on Revision of Structural Concrete Design Code, the bottom rebar of beam shall be extend at least 150mm into the support member. However, if the bottom rebar extend to satisfy Revision of Structural Concrete Design Code, the installation fo beam is impossible due to interference between the columns and beams. Thus, the aim of this study is estimation of production length of precast concrete beam by using splice length of bottom rebar. In this study to solve this problem, lap splice were used on the join. This study was calculated length of the reinforcement by the diameter. According to the length of the rebar, the production length of beam concrete was calculated. The results of this study will satisfy the Revision of Structural Concrete Design Code about column-beam connection when green frame will be applied.

  • PDF