In this paper, we described the fundamental concepts of proposed structural health monitoring system for Uldolmok Tidal Current Power Plant focusing on the use of smart sensors including fiber bragg grating sensors and macro fiber composite sensors. The structural health monitoring system can play an important role to maintain the structural safety for offshore structures like as bridges and high-rise buildings. In the case of tidal current power plant, the monitoring system is much more important since the structures are usually constructed at the site with severer environmental loadings such as high current speed.
In this paper, vibration-based structural health monitoring methods that are suitable for caisson-type structures are examined by an experimental evaluation. To achieve the objective, four approaches are implemented. First, vibration-based structural health monitoring methods are selected to monitor the structural condition of caisson-type breakwaters. Second, a lab-scaled caisson structure is constructed to verify the selected monitoring methods. Third, the vibration characteristics are numerically analyzed using an FE model due to the change in the rubble mound condition. Finally, experimental vibration tests of the lab-scaled caisson structure are performed to monitor the vibration responses due to changes in rubble mound conditions and the performances of the selected methods are examined from the monitoring results.
This paper provides an overview of the use of different Distributed Optical Fiber Sensor systems (DOFSs) to perform Structural Health Monitoring (SHM) in the specific case of civil engineering structures. Nowadays, there are several methods available for extracting distributed measurements from optical fiber, and their use have to be according with the aims of the SHM performance. The continuous-in-space data is the common advantage of the different DOFSs over other conventional health monitoring systems and, depending on the particular characteristics of each DOFS, a global and/or local health structural evaluation is possible with different accuracy. Firstly, the fundamentals of different DOFSs and their principal advantages and disadvantages are presented. Then, laboratory and field tests using different DOFSs systems to measure strain in structural elements and civil structures are presented and discussed. Finally, based on the current applications, conclusions and future trends of DOFSs in SHM in civil structures are proposed.
Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.
There is greater significance in identifying the incipient damages in structures at the time of their initiation as timely rectification of these minor incipient cracks can save huge maintenance cost. However, the change in the global dynamic characteristics of a structure due to these subtle damages are insignificant enough to detect using the majority of the current damage diagnostic techniques. Keeping this in view, we propose a hybrid damage diagnostic technique for detection of minor incipient damages in the structures. In the proposed automated hybrid algorithm, the raw dynamic signatures obtained from the structure are decomposed to uni-modal signals and the dynamic signature are reconstructed by identifying and combining only the uni-modal signals altered by the minor incipient damage. We use these reconstructed signals for damage diagnostics using ARMAX model. Numerical simulation studies are carried out to investigate and evaluate the proposed hybrid damage diagnostic algorithm and their capability in identifying minor/incipient damage with noisy measurements. Finally, experimental studies on a beam are also presented to compliment the numerical simulations in order to demonstrate the practical application of the proposed algorithm.
Hypertension is the major factor of most death and high blood pressure (BP) can lead to stroke, myocardial infarction and cardiac failure. Moreover, hypertension is strongly correlated with body mass index (BMI). Although the exact causes of hypertension are still unclear, some of genetic loci were discovered from genome-wide association study (GWAS). Therefore, it is essential to study genetic variation for finding more genetic factor affecting hypertension. The purpose of our study is to conduct a CNV association study for hypertension-related traits, BP and BMI, in Korean individuals. We identified 2,206 CNV regions from 3,274 community-based Korean participants using the Affymetrix Genome-Wide Human SNP Array 6.0 platform and performed a logistic regression analysis of CNVs with two hypertension-related traits, BP and BMI. Moreover, the 4,692 participants in an independent cohort were selected for respective replication analyses. GWAS of CNV identified two loci encompassing previously known hypertension-related genes: LPA (lipoprotein) on 6q26, and JAK2 (Janus kinase 2) on 9p24, with suggestive p-values (0.0334 for LPA and 0.0305 for JAK2 ). These two positive findings, however, were not evaluated in the replication stage. Our result confirmed the conclusion of CNV study from the WTCCC suggesting weak association with common diseases. This is the first study of CNV association study with BP and BMI in Korean population and it provides a state of CNV association study with common human diseases using SNP array.
The purpose of this study was to assess the causal relationships of attitude toward fish eating, health involvement, convenience, fish consumption and age. A total of 235 questionnaires were completed. Structural equation model was used to assess the causal relationships among constructs. Results of the study demonstrated that the structural equation analysis result for the data also indicated excellent model fit. The influences of age on health involvement and convenience were statistically significant. The influences of health involvement on attitude toward fish eating and fish consumption behavior were statistically significant. The influence of convenience on fish consumption behavior were statistically significant. Moreover, the age had a significant indirect effect on attitude toward fish eating through health involvement. The age also had a significant indirect effect on fish consumption behavior through convenience.
In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.
Civil infrastructures, such as bridges and tunnels are most important assets and their failure during service will have significant economic and social impact in any country. Behavior of a bridge can be evaluated only through actual monitoring/measurements of bridge members under the loads of interest. Theoretical analysis alone is not a good predictor of the ability of a bridge. In some cases, theoretical analyses can give less effect than actual since theoretical analyses do not consider the actual condition of the bridge, support conditions, level of corrosion and damage in members and connections etc. Hence actual measurements of bridge response should be considered in making decisions on structural integrity, especially in cases of high value bridges (large spans and major crossings). This paper describes in detail the experimental investigations carried out on an open web type steel railway bridge. Strain gages and displacement transducers were installed at critical locations and responses were measured during passage of locomotives. Stresses were evaluated and extrapolated to maximum design loading. The responses measured from the bridge were within the permissible limits. The methodology adopted shall be used for assessing the structural integrity of the bridge for the design loads.
The Jiangyin Bridge is a suspension bridge with a main span of 1385 m over the Yangtze River in Jiangsu Province, China. Being the first bridge with a main span exceeding 1 km in Chinese mainland, it had been instrumented with a structural health monitoring (SHM) system when completed in 1999. After operation for several years, it was found with malfunction in sensors and data acquisition units, and insufficient sensors to provide necessary information for structural health evaluation. This study reports the SHM system upgrade project on the Jiangyin Bridge. Although implementations of SHM system have been reported worldwide, few studies are available on the upgrade of SHM system so far. Recognizing this, the upgrade of original SHM system for the bridge is first discussed in detail. Especially, lessons learned from the original SHM system are applied to the design of upgraded SHM system right away. Then, performance assessment of the bridge, including: (i) characterization of temperature profiles and effects; (ii) recognition of wind characteristics and effects; and (iii) identification of modal properties, is carried out by making use of the long-term monitoring data obtained from the upgraded SHM system. Emphasis is placed on the verification of design assumptions and prediction of bridge behavior or extreme responses. The results may provide the baseline for structural health evaluation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.