• 제목/요약/키워드: Structural Friction

검색결과 558건 처리시간 0.025초

Multi-criteria performance-based optimization of friction energy dissipation devices in RC frames

  • Nabid, Neda;Hajirasouliha, Iman;Petkovski, Mihail
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.185-199
    • /
    • 2020
  • A computationally-efficient method for multi-criteria optimisation is developed for performance-based seismic design of friction energy dissipation dampers in RC structures. The proposed method is based on the concept of Uniform Distribution of Deformation (UDD), where the slip-load distribution along the height of the structure is gradually modified to satisfy multiple performance targets while minimising the additional loads imposed on existing structural elements and foundation. The efficiency of the method is demonstrated through optimisation of 3, 5, 10, 15 and 20-storey RC frames with friction wall dampers subjected to design representative earthquakes using single and multi-criteria optimisation scenarios. The optimum design solutions are obtained in only a few steps, while they are shown to be independent of the selected initial slip loads and convergence factor. Optimum frames satisfy all predefined design targets and exhibit up to 48% lower imposed loads compared to designs using a previously proposed slip-load distribution. It is also shown that dampers designed with optimum slip load patterns based on a set of spectrum-compatible synthetic earthquakes, on average, provide acceptable design solutions under multiple natural seismic excitations representing the design spectrum.

Estimation of Friction Coefficient Using Smart Strand

  • Jeon, Se-Jin;Park, Sung Yong;Kim, Sang-Hyun;Kim, Sung Tae;Park, YoungHwan
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.369-379
    • /
    • 2015
  • Friction in a post-tensioning system has a significant effect on the distribution of the prestressing force of tendons in prestressed concrete structures. However, attempts to derive friction coefficients using conventional electrical resistance strain gauges do not usually lead to reliable results, mainly due to the damage of sensors and lead wires during the insertion of strands into the sheath and during tensioning. In order to overcome these drawbacks of the existing measurement system, the Smart Strand was developed in this study to accurately measure the strain and prestressing force along the strand. In the Smart Strand, the core wire of a 7-wire strand is replaced with carbon fiber reinforced polymer in which the fiber Bragg grating sensors are embedded. As one of the applications of the Smart Strand, friction coefficients were evaluated using a full-scale test of a 20 m long beam. The test variables were the curvature, diameter, and filling ratio of the sheath. The analysis results showed the average wobble and curvature friction coefficients of 0.0038/m and 0.21/radian, respectively, which correspond to the middle of the range specified in ACI 318-08 in the U.S. and Structural Concrete Design Code in Korea. Also, the accuracy of the coefficients was improved by reducing the effective range specified in these codes by 27-34 %. This study shows the wide range of applicability of the developed Smart Strand system.

The seismic reliability of two connected SMRF structures

  • Aval, Seyed Bahram Beheshti;Farrokhi, Amir;Fallah, Ahmad;Tsouvalas, Apostolos
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.151-164
    • /
    • 2017
  • This article aims to investigate the possible retrofitting of a deficient building with soft story failure mode by connecting it to an adjacent building which is designed based on current code with friction dampers at all floors. Low cost and high performance reliability along with significant energy dissipation pertaining to stable hysteretic loops may be considered in order to choose the proper damper for connecting adjacent buildings. After connecting two neighbouring floors by friction dampers, the sliding forces of dampers at various stories are set in two arrangements: uniform sliding force and then variable sliding force. In order to account for the stochastic nature of the seismic events, incremental dynamic analyses are employed prior and after the installation of the friction dampers at the various floors. Based on these results, fragility curves and mean annual rate of exceedance of serviceability and ultimate limit states are obtained. The results of this study show that the collapse mode of the deficient building can affect the optimum arrangement of sliding forces of friction dampers at Collapse Prevention (CP) performance level. In particular, the Immediate Occupancy (IO) performance level is not tangible to the sliding force arrangement and it depends solely on sliding force value. Generally it can be claimed that this rehabilitation scheme can turn the challenge of pounding two adjacent buildings into the opportunity of dissipating a large amount of the seismic input energy by the friction dampers, thus improving significantly the poor seismic performance of the deficient structure.

회전 마찰형 제진장치의 이력특성에 대한 실험적 연구 (Experimental Study the on Hysteretic Characteristics of Rotational Friction Energy Dissipative Devices)

  • 박진영;한상환;문기훈;이강석;김형준
    • 한국지진공학회논문집
    • /
    • 제17권5호
    • /
    • pp.227-235
    • /
    • 2013
  • Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.

엘리베이터용 로프 브레이크의 구조해석 (Structural Analysis of Rope Brake for Elevator)

  • 김정훈;이종선;박임준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.9-13
    • /
    • 2003
  • The objective of this study is structural analysis of rope brake for elevator. The finite element model was developed to compute the stress, strain and friction force for rope brake. The ANSYS code was used for this analysis. In order to structural analysis of rope brake, many variables such as internal pressure, boundary condition, load condition and constraints were considered.

  • PDF

교량받침용 세라믹 마찰재 적용을 위한 실험적 연구 (Experimental Study on the Application of Ceramic Friction Materials for Bridge Bearing)

  • 박지훈;이정우;곽종원
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.527-534
    • /
    • 2023
  • 본 논문은 기존의 교량받침 마찰재인 PTFE의 내구성을 보완하고 낮은 마찰계수 발현 및 윤활제 미사용에서 마찰거동을 할 수 있는 세라믹 소재의 교량받침 적용을 위한 연구를 수행하였다. 세라믹 소재는 지르코니아계(ZrO2)를 설정하였으며, 조도계수에 따른 마찰거동 평가를 수행하였다. 조도계수는 0.8 및 0.027로 구분하였으며, 15 MPa 면압조건에서 평균마찰계수는 모두 0.16으로 산정되었다. 이후, 세라믹을 마찰재로 제작하여 교량받침에 적용하였으며, PTFE 적용 교량받침과의 압축실험 및 마찰실험을 통해 성능비교를 수행하였다. 압축실험에서 세라믹 및 PTFE 적용 교량받침은 하중 재하에 따라 이상적인 압축거동을 나타냈다. 세라믹 적용 교량받침은 파손 및 결함이 관찰되지 않았지만, PTFE 적용 교량받침에서는 윤활제 소실이 관찰되었다. 마찰거동을 통해 분석한 세라믹 적용 교량받침의 평균마찰계수는 0.16으로 나타났다. 세라믹의 물리적 및 화학적 특성의 고유 재료물성과 성능평가를 통해 도출된 우수한 역학적 특성 및 0.16 수준의 마찰계수는 마찰재로써 고려할 수 있는 가능성을 제시한다.

지진하중을 받는 다층 건물에 설치된 마찰감쇠기 설계 (Design of Friction Dampers installed at a Multi-Story Building under Seismic Load)

  • 성지영;민경원
    • 한국전산구조공학회논문집
    • /
    • 제24권4호
    • /
    • pp.457-462
    • /
    • 2011
  • 본 논문은 지진응답을 제어하기 위해 다층 건물에 설치된 마찰감쇠기의 간단한 설계절차를 제안하였다. 마찰감쇠기는 비선형성이 강하므로 마찰감쇠기가 설치된 건물의 제어효과를 파악하는 것은 어렵다. 마찰감쇠기의 제어력은 층간속도에 영향을 받으므로, 인접한 모드가 서로 연계된다. 따라서 응답은 공진일 때 안정상태응답으로 가정하여 유도하였다. 첫째로 지진하중에 대한 정해응답을 구하는 것은 불가능하므로 조화가진을 받을 때의 근사해를 유도하였다. 둘째, 다층 건물을 단자유도로 변환하기 위해서 모드해석이 수행되었다. 셋째, 근사해를 이용하여 등가감쇠비를 유도하였다. 그리고 등가감쇠비를 이용하여 응답감소계수를 제안하였다. 마지막으로, 마찰감쇠기의 마찰력을 응답감소계수에 의해 설계하고 설계된 감쇠기를 7개의 지진파를 통해 검증하였다. 비선형해석 결과가 제안된 절차의 유효성을 확인하였다.

PVDF/MgO 마찰재를 이용한 마찰면진장치의 성능 분석 (Performance Analysis of Friction Pendulum System using PVDF/MgO Friction Material)

  • 김성조;김지수;한동석
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.213-219
    • /
    • 2021
  • 구조물을 지진 위험으로부터 완화시키기 위한 마찰면진장치의 상용화된 마찰재료 중 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)은 내화학성과 마찰성능이 우수하다. 그러나 PTFE는 상대적으로 낮은 내마모성을 가지므로 경제적인 마찰재료이며 산화마그네슘(oxide magnesium, MgO)으로 내마모성을 증가시킨 개선된 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF)를 PTFE의 대안으로 제안하였다. 개발된 PVDF/MgO 마찰재를 이용하여 실험을 통해 마찰성능을 측정하였으며 PTFE의 마찰성능과 비교하였다. 그리고 측정된 마찰계수를 이용하여 마찰면진장치를 설계하였다. 마찰면진장치의 성능은 교량의 비선형 시간이력 해석을 통해 확인하였고, 이를 통해 마찰면진장치의 마찰재료로 PTFE를 대체하여 PVDF/MgO를 사용하는 것에 대한 타당성을 평가하였다.

저마찰 고속형 공기압 실린더의 설계에 관한 연구 (A Study on the Design of a Low-Friction, High-Speed Pneumatic Cylinder)

  • 김도태;김동수;주민진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1230-1235
    • /
    • 2008
  • Of all of pneumatic components utilized in the make up of pneumatic circuits on either automatic assembly machine or industrial equipment, the pneumatic cylinder is more oriented toward being a structural as well as a pneumatic member. The structural design must be based to a large degree on the end of application of the cylinder on the equipment it is operating. In this paper, design studies of a double-acting pneumatic cushion type cylinder with low-friction and high-speed driving have been developed. Of interest here is to investigate the structural analysis of cylinder tube, piston rod, end cover, and to analyze the buckling of piston rod. Also, a relief valve type cushion mechanism is considered. This cushion mechanism is found to be adequate under a high-speed driving of pneumatic cylinders.

  • PDF