DOI QR코드

DOI QR Code

Experimental Study on the Application of Ceramic Friction Materials for Bridge Bearing

교량받침용 세라믹 마찰재 적용을 위한 실험적 연구

  • Ji-Hun Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jung-Woo Lee (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jong-Won Kwark (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 박지훈 (한국건설기술연구원 구조연구본부) ;
  • 이정우 (한국건설기술연구원 구조연구본부) ;
  • 곽종원 (한국건설기술연구원 구조연구본부)
  • Received : 2023.11.30
  • Accepted : 2023.12.19
  • Published : 2023.12.30

Abstract

This paper conducted a study on the application of ceramic materials for bridge bearing that can complement the durability of PTFE, a conventional bridge bearing friction material, and exhibit low coefficient of friction and friction behavior without lubricant. The ceramic material was zirconia (ZrO2), and the friction behavior was evaluated according to the roughness coefficient. The roughness coefficient was divided into 0.8 and 0.027, and the average coefficient of friction was calculated to be 0.16 under 15 MPa surface pressure. Afterward, ceramic was made into friction material and applied to the bridge bearing, and performance comparison with PTFE bridge bearing was conducted through compression test and friction test. In the compression test, the ceramic and PTFE bridge bearing showed ideal compression behavior depending on the load. No fractures or defects were observed in the ceramic bridg bearing, but lubricant loss was observed in the PTFE bridge bearing. The average coefficient of friction of the ceramic bridge bearing analyzed through friction behavior was 0.16. The inherent material properties of the physical and chemical properties of ceramics, the excellent mechanical properties derived from the performance evaluation, and the coefficient of friction of 0.16 suggest that it can be considered as a friction material.

본 논문은 기존의 교량받침 마찰재인 PTFE의 내구성을 보완하고 낮은 마찰계수 발현 및 윤활제 미사용에서 마찰거동을 할 수 있는 세라믹 소재의 교량받침 적용을 위한 연구를 수행하였다. 세라믹 소재는 지르코니아계(ZrO2)를 설정하였으며, 조도계수에 따른 마찰거동 평가를 수행하였다. 조도계수는 0.8 및 0.027로 구분하였으며, 15 MPa 면압조건에서 평균마찰계수는 모두 0.16으로 산정되었다. 이후, 세라믹을 마찰재로 제작하여 교량받침에 적용하였으며, PTFE 적용 교량받침과의 압축실험 및 마찰실험을 통해 성능비교를 수행하였다. 압축실험에서 세라믹 및 PTFE 적용 교량받침은 하중 재하에 따라 이상적인 압축거동을 나타냈다. 세라믹 적용 교량받침은 파손 및 결함이 관찰되지 않았지만, PTFE 적용 교량받침에서는 윤활제 소실이 관찰되었다. 마찰거동을 통해 분석한 세라믹 적용 교량받침의 평균마찰계수는 0.16으로 나타났다. 세라믹의 물리적 및 화학적 특성의 고유 재료물성과 성능평가를 통해 도출된 우수한 역학적 특성 및 0.16 수준의 마찰계수는 마찰재로써 고려할 수 있는 가능성을 제시한다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원의 주요사업인 "세라믹을 활용하여 내구성이 개선된 교량받침 마찰재 개발(20230136-001)" 과제의 연구비 지원에 의해 수행되었습니다.

References

  1. Adamov, A.A., Kamenskikh, A.A. (2020). The deformation behavior of modern antifriction polymer materials in the elements of transport and logistics systems with frictional contact, Digital Science 2019, Springer International Publishing, 1114, 522-532.
  2. Boch, P., Ni, J.C. (2010). Ceramic Materials: Processes, Properties, and Applications, John Wiley & Sons, 98.
  3. Choi, E., Choi, Y., Lee, J., Jang, Y., Lee, S. (2019). Assessment of friction of ep frictional materials used for spherical bearings of railway bridges, Journal of Korean Society of Steel Construction, 31, 293-299 [in Korean]. https://doi.org/10.7781/kjoss.2019.31.4.293
  4. Choi, J.Y., Park, H.S., Chung, J.S. (2020). Evaluation on fatigue behavior of EP (Engineering Plastic) friction pendulum bearing system, The Journal of the Convergence on Culture Technology, 6(4), 703-708 [in Korean]. https://doi.org/10.17703/JCCT.2020.6.4.703
  5. Han, O., Kwark, J.W., Lee, J.W., Han, W.J. (2023). Analytical study on the frictional behavior of sliding surfaces depending on ceramic friction materials, Applied Sciences, 13(1), 234.
  6. Kim, S.J., Kim, J.S., Han, T.S. (2021). Performance analysis of friction pendulum system using PVDF/MgO friction material, Journal of the Computational Structural Engineering Institute of Korea, 34(4), 213-219 [in Korean]. https://doi.org/10.7734/COSEIK.2021.34.4.213
  7. Kang, D.H., Hyun, J.H. (2021). Evaluation of the durability of spherical bridge bearing using polyamide engineering plastic middle plate, Journal of the Korean Society for Railway, 9, 1021-1031 [in Korean]. https://doi.org/10.24284/JKOSUR.2021.12.9.4.1021
  8. Lee, Y.I., Lee, Y.J., Lee, H.P., Cho, M.S., Jee, Y.S., Beak, J.H. (2015). Study on the performance improvement of an EQS device applied nuclear power plant, Journal of the Earthquake Engineering Society of Korea, 19(1), 13-19 [in Korean]. https://doi.org/10.5000/EESK.2015.19.1.013
  9. Nosov, Y.O., Kamenskikh, A.A. (2022). Influence analysis of lubricant recesses on the working capacity of the bridge span spherical bearing, Lubricants, 10(11), 283.
  10. Oh, S.T., Lee, D.J., Jun, S.M., Jeong, S.H. (2016). A long-term friction test of bridge bearings considering running speed of next generation train, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(2), 34-39 [in Korean]. https://doi.org/10.11112/jksmi.2016.20.2.034
  11. Quaglini, V., Bocciarelli, M., Gandelli, E., Dubini, P. (2014). Numerical assessment of frictional heating in sliding bearings for seismic isolation, Journal of Earthquake Engineering, 18(8), 1198-1216. https://doi.org/10.1080/13632469.2014.924890
  12. Dong, S., Chung, K.H., Lee, K.S. (2011). Effect of surface roughness of counterface on tribological characteristics of PTFE and UHMWPE, Tribology and Lubricants, 27(6), 293-301 [in Korean]. https://doi.org/10.9725/kstle.2011.27.6.293
  13. Xing, Y., Deng, J., Wu, Z., Wu, F. (2017). High friction and low wear properties of laser-textured ceramic surface under dry friction, Optics & Laser Technology, 93, 24-32.  https://doi.org/10.1016/j.optlastec.2017.01.032