• 제목/요약/키워드: Structural Design Tool

검색결과 483건 처리시간 0.025초

요소제거법을 이용한 구조물 위상최적설계 (Structural Topology Optimization using Element Remove Method)

  • 임오강;이진식;김창식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.183-190
    • /
    • 2001
  • Topology optimization. has been evolved into a very efficient conceptual design tool and has been utilized into design engineering processes in many industrial parts. In recent years, topology optimization has become the focus of structural optimization design and has been researched and widely applied both in academy and industry. Traditional topology optimization has been using homogenization method and optimality criteria method. Homogenization method provides relationship equation between structure which includes many holes and stiffness matrix in FEM. Optimality criteria method is used to update design variables while maintaining that volume fraction is uniform. Traditional topology optimization has advantage of good convergence but has disadvantage of too much convergency time and additive checkerboard prevention algorithm is needed. In one way to solve this problem, element remove method is presented. Then, it is applied to many examples. From the results, it is verified that the time of convergence is very improved and optimal designed results is obtained very similar to the results of traditional topology using 8 nodes per element.

  • PDF

철근 콘크리트 구조설계 통합시스템을 위한 데이터베이스 모델 제시와 응용 (A Research on the Proposal and Application of Data Model for an Integrated System of Reinforced Concrete Structures)

  • 정윤철;천진호;서용표;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.342-351
    • /
    • 1998
  • The purpose of this study is to develop a central database and a database management system to store and manage information systematically from each module of an integrated structural design system. In order to efficiently express structural design process related to the data which is very complex, we used an object-oriented modeling methodology to propose the possibility to apply a database schema for application programs in an integrated system for reinforced concrete structural design. Based on this model, we developed an interface between each module and central database. After modeled by using object modeling technique, the database was mapped by the relational database table. Then the central database and the interface were programed by using Visual C/syo ++/, a windows environmental development tool.

  • PDF

구조물의 설계 최적화를 위한 메트로폴리스 유전알고리즘의 개발 및 적용 (Development and Application of Metropolis Genetic Algorithm for the Structural Design Optimization)

  • 박균빈;류연선;김정태;조현만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.115-122
    • /
    • 2003
  • A Metropolis genetic algorithm(MGA) is developed and applied for the structural design optimization. In MGA favorable features of Metropolis algorithm in simulated annealing(SA) are incorporated in simple genetic algorithm(SGA), so that the MGA alleviates the disadvantage of finding imprecise solution in SGA and time-consuming computation in SA. Performances of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro genetic algorithm(μGA), and Kirkpatrick's SA. Typical numerical examples are used to evaluate the favorable features and applicability of MGA From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA is a reliable and efficient tool for structural design optimization.

  • PDF

레그 익스텐션 기구의 설계 및 구조해석 (Design and Structural Analysis of Leg Extension Machine)

  • 이종선;백두성
    • 한국산학기술학회논문지
    • /
    • 제5권4호
    • /
    • pp.326-330
    • /
    • 2004
  • 본 논문에서는 레그 익스텐션 기구의 안정성을 평가하기 위하여 3차원 유한요소 해석 코드인 ANSYS를 활용하여 구조해석을 실시하였다. 레그 익스텐션 기구를 제작함에 있어서 기존의 기구를 보완하고 운동효과의 향상, 안정성을 고려하여 설계하였다. 또한 레그 익스텐션 기구의 회전봉의 각도를 0°-360°까지 회전 가능하게 설계하여 운동하는 사람의 운동 강도를 조절할 수 있는 새로운 기구를 설계하였다.

  • PDF

Structural robustness: A revisit

  • Andre, Joao
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.193-205
    • /
    • 2020
  • The growing need for assuring efficient and sustainable investments in civil engineering structures has determined a renovated interest in the rational design of such structures from designers, clients and authorities. As a result, risk-informed decision-making methodologies are increasingly being used as a direct decision tool or as an upper-level layer from which performance-based approaches are then calibrated against. One of the most important and challenging aspects of today's structural design is to adequately handle the system-level effects, the known unknowns and the unknown unknowns. These aspects revolve around assessing and evaluating relevant damage scenarios, namely those involving unacceptable/intolerable damage levels. Hence, the importance of risk analysis of disproportionate collapse, and along with it of robustness. However, the way robustness has been used in modern design codes varies substantially, from simple provisions of prescriptive rules to complex risk analysis of the disproportionate collapse. As a result, implementing design for robustness is still very much a grey area and more so when it comes to defining means to quantify robustness. This paper revisits the most common robustness frameworks, highlighting their merits and limitations, and identifies one among them which is very promising as a way forward to solve the still open challenges.

Design and Implementation of Information Management Tools for the EDISON Open Platform

  • Ma, Jin;Lee, Jongsuk Ruth;Cho, Kumwon;Park, Minjae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.1089-1104
    • /
    • 2017
  • We have developed an information management tool for the EDISON (EDucation-research Integration through Simulation On the Net) open platform. EDISON is, at present, a web-based simulation service for education and research in five computational areas, namely, nanophysics, fluid dynamics, chemistry, structural dynamics, and computer aided optimal design. The EDISON open platform consists of three tiers: EDISON application framework, EDISON middleware, and EDISON infra-resources. The platform provides web portals for education and research in areas such as computational fluid dynamics, computational chemistry, computational nanophysics, computational structural dynamics, and computer aided optimal design along with user service. The main purpose of this research is to test the behavior of the release version of the EDISON Open-Platform under normal operating conditions. This management tool has been implemented using the RESTful API designed in EDISON middleware. The intention is to check co-operation between the middleware and the infrastructure. Suggested tools include User management, Simulation and Job management, and Simulation software (i.e., solver) testing. Finally, it is considered meaningful to develop a management tool that is not supported in other web-based online simulation services.

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

유체-구조 연성 효과를 고려한 복합소재 유연 프로펠러의 설계 (Design of Flexible Composite Propellers considering Fluid-structure Interaction)

  • 김지혜;안병권;김건도
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.61-69
    • /
    • 2020
  • Due to its flexibility of the composite propeller blade, it is necessary to design a shape capable of generating a desired load at a design point in consideration of the shape change of the propeller. In order to design it, we need to evaluate not only the hydrodynamic force around it, but also its structural response of flexible propeller according to its deformation. So, it is necessary to develop a design tool to predict the hydroelastic performance of a flexible propeller with deformation considering fluid-structure interaction and special operating conditions. Finally a design optimization tool for flexible propellermade of CFRP is required. In this study, a design methodology of the specific flexible composite propeller is suggested, considering fluid-structural interaction analysis of the specific flexible propeller.

지능형 공작기계 설계 지원 시스템 개발 (Development of Intellingent Design Support System for Machine Tools)

  • 차주헌;김종호;박면웅;박지형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1022-1027
    • /
    • 1995
  • We present a framework of an intelligent design support system for embodiment design of machine tools which can support efficiently and systematically the machine design by utilizing design knowledge such as objects(part), know-how, public, evaluation, and procedures. The design knowledge of machining center has been accumulated through interview with design experts of machine tool companies. The processes of embodiment design of machining center are established. We also introduce a hybrid knowledge representation so that the systm can easily deal with various and complicated design knowledge. The intelligent design system is being developed on the basis of object-oriented programming, and all parts of a design object, machining center, are also classified by the object-oriented modeling. For the demonstration of effectiveness of the suggested system, a structural design system for machine tools is implemented.

  • PDF