• Title/Summary/Keyword: Structural Damping

Search Result 1,212, Processing Time 0.028 seconds

A modified replacement beam for analyzing building structures with damping systems

  • Faridani, Hadi Moghadasi;Capsoni, Antonio
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.905-929
    • /
    • 2016
  • This paper assesses efficiency of the continuum method as the idealized system of building structures. A modified Coupled Two-Beam (CTB) model equipped with classical and non-classical damping has been proposed and solved analytically. In this system, complementary (non-classical) damping models composed of bending and shear mechanisms have been defined. A spatial shear damping model which is non-homogeneously distributed has been adopted in the CTB formulation and used to equivalently model passive dampers, viscous and viscoelastic devices, embedded in building systems. The application of continuum-based models for the dynamic analysis of shear wall systems has been further discussed. A reference example has been numerically analyzed to evaluate the efficiency of the presented CTB, and the optimization problems of the shear damping have been finally ascertained using local and global performance indices. The results reveal the superior performance of non-classical damping models against the classical damping. They show that the critical position of the first modal rotation in the CTB is reliable as the optimum placement of the shear damping. The results also prove the good efficiency of such a continuum model, in addition to its simplicity, for the fast estimation of dynamic responses and damping optimization issues in building systems.

Dynamic Characteristics and Responses of Tall Building Structures with Double Negative Stiffness Damped Outriggers

  • Sun, Feifei;Duan, Ningling;Wang, Meng;Yang, Jiaqi
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.229-242
    • /
    • 2021
  • Dynamic characteristics of tall building structures with double negative stiffness damped outriggers (2NSDO) are parametrically studied using the theoretical formula. Compared with one negative stiffness damped outrigger (1NSDO), 2NSDO can achieve a similar maximal modal damping ratio with a smaller negative stiffness ratio. Besides, the 2NSDO can improve the maximum achievable damping ratio to about 30% with less consumption of an outrigger damping coefficient compared with the double conventional damped outriggers (2CDO). Besides, the responses of structures with 2NSDO under fluctuating wind load are investigated by time-history analysis. Numerical results show that the 2NSDO is effective in reducing structural acceleration under fluctuating wind load, being more efficient than 1NSDO.

Identification of modal damping ratios of structures with closely spaced modal frequencies

  • Chen, J.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.417-434
    • /
    • 2002
  • This paper explores the possibility of using a combination of the empirical mode decomposition (EMD) and the Hilbert transform (HT), termed the Hilbert-Huang transform (HHT) method, to identify the modal damping ratios of the structure with closely spaced modal frequencies. The principle of the HHT method and the procedure of using the HHT method for modal damping ratio identification are briefly introduced first. The dynamic response of a two-degrees-of-freedom (2DOF) system under an impact load is then computed for a wide range of dynamic properties from well-separated modal frequencies to very closely spaced modal frequencies. The natural frequencies and modal damping ratios identified by the HHT method are compared with the theoretical values and those identified using the fast Fourier transform (FFT) method. The results show that the HHT method is superior to the FFT method in the identification of modal damping ratios of the structure with closely spaced modes of vibration. Finally, a 36-storey shear building with a 4-storey light appendage, having closely spaced modal frequencies and subjected to an ambient ground motion, is analyzed. The modal damping ratios identified by the HHT method in conjunction with the random decrement technique (RDT) are much better than those obtained by the FFT method. The HHT method performing in the frequency-time domain seems to be a promising tool for system identification of civil engineering structures.

Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation

  • Alih, Sophia C.;Vafaei, Mohammadreza;Ismail, Nufail;Pabarja, Ali
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.567-576
    • /
    • 2018
  • This manuscript introduces a new damping device which is composed of a water tank and a pendulum. The new damping device can be tuned to multiple frequencies. In addition, it has a higher energy dissipation capacity when compared with the conventional Tuned Liquid Dampers (TLDs). In order to evaluate the efficiency of this new damping device a series of free vibration and forced vibration tests were conducted on a scaled down single-story one-bay steel frame. Two different configurations were studied for the mass of the pendulum that included a completely and a partially submerged mass. It was observed that the completely submerged configuration led to 44% higher damping ratio when compared with the conventional TLD. In addition, the completely submerged configuration reduced the peak displacement response of the structure 1.6 times more than the conventional TLD. The peak acceleration response of the structure equipped with the new damping device was reduced twice more than the conventional TLD. It was also found that, when the excitation frequency is lower than the resonance frequency, the conventional TLD performs better than the partially submerged configuration of the new damping device.

Dynamic Characteristics of Cylindrical Composite Panels With Surface Damping Treatments Using Full Layerwise Theory (완전층별변위이론에 근거한 표면감쇠처리된 원통형 복합적층 패널의 동적특성)

  • Seong, Tae-Hong;Lee, In;Oh, Il-Kwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.29-32
    • /
    • 2005
  • Based on the full layerwise displacement shell theory, vibration and damping characteristics of cylindrical sandwich panels are investigated. The transverse shear deformation and the normal strain are fully taken into account for structural damping modelling. Modal damping factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich beams. Present results shows that full layerwise theory can accurately predict vibration and damping characteristics of cylindrical composite panels with surface damping treatments and constrained layer damping. The viscoelastic materials depending on elevated temperature environment and exciting frequencies can be fully considered.

  • PDF

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 안상준;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

Structural Damping Effects on Stability of a Cantilever Column under Sub-tangentially Follower Force (종동력을 받는 외팔기둥의 동적 안정성에 미치는 구조감쇠 효과)

  • Min, Dong-Ju;Park, Jae-gyun;Kim, Moon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.635-643
    • /
    • 2016
  • A stability theory of a damped cantilever column under sub-tangential follower forces is first summarized based on the stability map. It is then demonstrated that internal and external damping can be exactly transformed to Rayleigh damping so that the damping coefficients can be effectively determined using proportional damping. Particularly a parametric study with variation of damping coefficients is performed in association with flutter loads of Beck's column and it is shown that two damping coefficients can be correctly estimated for real systems under the assumption of Rayleigh damping. Finally a frequency equation of a cantilever beam subjected to both a sub-tangentially follower force and two kinds of damping forces is presented in the closed-form and its stability maps are constructed and compared with FE solutions in the practical range of damping coefficients.

Structural analysis based on multiresolution blind system identification algorithm

  • Too, Gee-Pinn James;Wang, Chih-Chung Kenny;Chao, Rumin
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.819-828
    • /
    • 2004
  • A new process for estimating the natural frequency and the corresponding damping ratio in large structures is discussed. In a practical situation, it is very difficult to analyze large structures precisely because they are too complex to model using the finite element method and too heavy to excite using the exciting force method; in particular, the measured signals are seriously influenced by ambient noise. In order to identify the structural impulse response associated with the information of natural frequency and the corresponding damping ratio in large structures, the analysis process, a so-called "multiresolution blind system identification algorithm" which combines Mallat algorithm and the bicepstrum method. High time-frequency concentration is attained and the phase information is kept. The experimental result has demonstrated that the new analysis process exploiting the natural frequency and the corresponding damping ratio of structural response are useful tools in structural analysis application.

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.

A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps (범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구)

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.252-259
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performances, stiffness, damping coefficient and load capacity, depend on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1 mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.