• Title/Summary/Keyword: Structural Damping

Search Result 1,216, Processing Time 0.028 seconds

Response Of Steel Frame Structures With Added Elastic Dampers (탄성 댐퍼가 추가된 대형철골 구조물의 응답특성)

  • 배춘희;조철환;양경현;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.808-812
    • /
    • 2002
  • The feasibility of using elastic dampers to mitigate earthquake-induced structural response is studied in this paper. The properties of elastic dampers are briefly described. A procedure for evaulating the elastic damping effect when added to a structure is proposed in which the damping effect of elastic dampers is incorporated into modal damping ratios through an energy approach. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.

  • PDF

Vibration Damping Analysis of Multi-Layered Viscoelastic Material (다층 점탄성재료의 진동감쇠 특성에 관한 연구)

  • 윤영식;황동환;이상조
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.487-496
    • /
    • 1994
  • Recently, the application of viscoelastic material in the field of vibration isolation has gradually increased due to its achievement in structural damping capacity, and many of the theoretical and experimental study has been carried out. In this study, the dynamic characteristics of the visoelastically supported cantilever beam, of which govering equation is based on the Bernoulli- Euler equation, is analyzed theoretically and experimentally. Expression for stiffness of multi-layered viscoelastic materal has been developed using variables such as frequency and number of layers, and further, based on this expression, damping characteristic of the beam is investigated with experimental verification.

  • PDF

Vibration Control of Cantilever Beams using Magnetic Damping (자기감쇄를 이용한 외팔보의 진동제어)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.259-264
    • /
    • 1999
  • The magnetoelastic interaction between electrically conducting structures and magnetic fields is suggested to be used as a possible means for vibration suppression mechanism in structural control. Effectiveness of the active control mechanism is demonstrated by an experiment which is performed to examine the basic tenets of magnetically induced vibration and magnetoelastic damping of a cantilevered beam virating in the presence of magnetic fields Experimental results show that the feedback control scheme works effectively. Several strategies are suggested to improve the controllability using the magnetic damping.

  • PDF

Structural Dynamic System Reconstruction (구조물 동적시스템 재현기법)

  • Kim, Hyeung-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.308-312
    • /
    • 2002
  • To determine the natural frequencies and damping ratios of composite laminated plates, we present an officient modal parameter estimation technique by developing residual spectrum based structural system reconstruction. The modal parameters can be estimated from poles and residues of the system transfer functions, derived from the state space system matrices. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the modal coordinates of the structural dynamic system reconstructed from the experimental frequency response functions. These results are compared with those of finite element analysis and single-degree-of-freedom curve fitting.

Reliability analysis of uncertain structures using earthquake response spectra

  • Moustafa, Abbas;Mahadevan, Sankaran
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.279-295
    • /
    • 2011
  • This paper develops a probabilistic methodology for the seismic reliability analysis of structures with random properties. The earthquake loading is assumed to be described in terms of response spectra. The proposed methodology takes advantage of the response spectra and thus does not require explicit dynamic analysis of the actual structure. Uncertainties in the structural properties (e.g. member cross-sections, modulus of elasticity, member strengths, mass and damping) as well as in the seismic load (due to uncertainty associated with the earthquake load specification) are considered. The structural reliability is estimated by determining the failure probability or the reliability index associated with a performance function that defines safe and unsafe domains. The structural failure is estimated using a performance function that evaluates whether the maximum displacement has been exceeded. Numerical illustrations of reliability analysis of elastic and elastic-plastic single-story frame structures are presented first. The extension of the proposed method to elastic multi-degree-of-freedom uncertain structures is also studied and a solved example is provided.

Effects of the Flexibility on the Structural Responses of a Tension Leg Platform (인장계류식 해양구조물의 구조응답에 미치는 굽힘강성의 영향)

  • Lee, Chang-Ho;Lee, Soo-Lyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • The structural response characteristics of Tension leg platforms(TLPs) in waves are examined for presenting the basic data for structural design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the structural response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The mooring forces are estimated as the sum of pretension of tendons and variational tension due to longitudinal displacements. Stiffness matrices of elastic beam elements connecting nodes are formulated by ordinary method of three dimensional frame analysis. The equation of motion about the whole structure is obtained by the sum of forces and moments acting on each nodes.

Seismic Characteristic Evaluation on Strip-type Damping Devices with Optimized Shape (최적 형상 스트립형 감쇠장치의 내진 특성 평가)

  • Hwang, Jung-Hyun;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.26-37
    • /
    • 2019
  • This paper aims to investigate the seismic characteristics of strip-type damping devices possessing optimized shapes for the moment-resisting mechanism throughout analytical and experimental studies. Predicting equations for initial stiffness and yielding strength were introduced and compared with analytical results obtained from finite element analyses (FEAs) using commercial FEA program ABAQUS. In order for establishing predicting equations, two idealized processes were considered and both predicting equations showed that they could provide enough approximations for seismic applications in building structures. Throughout experimental studies, it was noted that structural uncertainties on mild steels, connection details and structural types linking damping devices with building structures could interrupt predicting structural behavior of the devices. Also, it was observed that shear stress concentrations should be considered if shear yielding type devices are applied into building structures. Nevertheless, it was shown that structural conservatism can be established using the predicting equations and seismic applications of the damping devices can enhance the seismic performance of building structures efficiently in the viewpoint that they have high resistance to low-cycle fatigue failures.