• Title/Summary/Keyword: Structural Coupling

Search Result 721, Processing Time 0.028 seconds

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

Optimum Welding Position between Shell and Cylinder based on SEA (SEA 를 이용한 쉘과 실린더의 최적 용접 조건)

  • Ahn, Byoung-Ha;Lee, Jang-Woo;Jeon, Simon;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.258-264
    • /
    • 2012
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represents characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

The Behavior of Reinforced Concrete Coupling Slab in Wall-Dominant System (벽식 아파트 구조에서 연결슬래브의 거동특성)

  • Choi, Youn-Cheul;Choi, Hyun-Ki;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.61-64
    • /
    • 2006
  • A common form of construction for apartment buildings consists of walls and coupling element. But, the structural behavior of coupling element are very complex and affected by the properties of coupling element. The propose of this paper is to evaluation the behavior of coupling element in wall-dominant system. An 1/2 scale three specimens was constructed and under cyclic loads. The specimen was consisted of opening walls and coupling element as well as floor slabs. From the result of this study, in coupling slabs, the stresses were not uniform across the width. And the effective width of coupling slabs was found smaller than the that of predicted from previous studies.

  • PDF

Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity

  • Bagha, Ashok K.;Modak, Subodh V.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • This paper presents and compares three feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity. These are a) control strategy based on direct output feedback (DOFB) b) control strategy based on linear quadratic regulator (LQR) to reduce structural vibrations and c) LQR control strategy with a weighting scheme based on structural-acoustic coupling coefficients. The first two strategies are indirect control strategies in which noise reduction is achieved through active vibration control (AVC), termed as AVC-DOFB and AVC-LQR respectively. The third direct strategy is based on active structural-acoustic control (ASAC). This strategy is an LQR based optimal control strategy in which the coupling between the various structural and the acoustic modes is used to design the controller. The strategy is termed as ASAC-LQR. A numerical model of a 3-D rectangular box cavity with a flexible plate (glued with piezoelectric patches) and with other five surfaces treated rigid is developed using finite element (FE) method. A single pair of collocated piezoelectric patches is used for sensing the vibrations and applying control forces on the structure. A comparison of frequency response function (FRF) of structural nodal acceleration, acoustic nodal pressure, and piezoelectric actuation voltage is carried out. It is found that the AVC-DOFB control strategy gives equal importance to all the modes. The AVC-LQR control strategy tries to consume the control effort to damp all the structural modes. It is seen that the ASAC-LQR control strategy utilizes the control effort more intelligently by adding higher damping to those structural modes that matter more for reducing the interior noise.

A Study on the Reduction of Booming Noise of an Automobile (승용차의 부밍 소음 저감에 관한 연구)

  • 이상현;강상욱;최형길;이장무;성명호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.867-871
    • /
    • 1996
  • Recently many studies have been carried out to predict the characteristics of vehicle noise and to reduce the noise for enhancing the ride quality. In this study, the structural-acoustic coupling theory and the acoustic finite element theory were reviewed, and the structural acoustic coupling analysis was applied to an automobile. Because of nonuniformed lateral shape of a compartment cavity, the acoustic modes were calculated with 3-D finite element modeling. The structural modes were measured with the modal testing. Using the structural-acoustic cooling analysis, the modes which strongly coupled to the interior noise were identified and the boundary regions which could reduce noise level efficiently by structural modification were predicted.

  • PDF

Design of Directional Structural-Acoustic Coupled Radiator in Wave Number Domain (파수 영역에서 지향성 구조-음향 연성 방사체 설계)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.240-243
    • /
    • 2005
  • A design procedure using spatial Fourier transform is presented for a structural-acoustic coupled radiator that can emit sound in the desired direction with high power and low side lobe level. The design procedure consists of three steps. Firstly, the structural-acoustic coupled radiator is chosen to obtain strong coupling between structural vibration and acoustic pressure. The radiator is composed by two spaces which are separated by a wall. Spaces can be categorized as reverberant finite space and unbounded semi-infinite space, and the wall are composed of two plates and an opening. The velocities on the wall are predicted. Secondly, directivity and energy distribution of radiator are predicted in wave number domain using spatial Fourier transform. Finally, optimal design variables are calculated using a dual optimal algorithm. Its computational example is presented including the directivity and resulting pressure distribution using proposed procedure.

  • PDF

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

A Structural Analysis and Optimization of a 60 N.m Class Flexible Disk Coupling (60 N.m급 플렉서블 디스크 커플링 구조해석 및 최적화)

  • Lee, H.K.;Kim, B.R.;Kim, S.M.;Kim, J.B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.774-781
    • /
    • 2013
  • A structural analysis was carried out for a 60 N.m class flexible disk coupling. Flexible disk couplings are used to transmit power between two shafts. When a flexible coupling is used, some amount of misalignments such as angle of deviation and end play can be allowed in assembling the shafts. However, the maximum allowable misalignment should be decided to guarantee the fatigue life. In this study, the effect of the angle of deviation and end play on the maximum stress was investigated. From the analysis results, it was shown that the angle of deviation has a greater effect on the maximum stress than the end play. Furthermore, the dimensions of the disk plate were optimized to realize a better design. From the optimization, the maximum stress could be reduced by up to 5.2%.