• Title/Summary/Keyword: Structural Connectivity

Search Result 148, Processing Time 0.029 seconds

A Study on Socio-technical System for Sustainability of the 4th Industrial Revolution: Machine Learning-based Analysis

  • Lee, Jee Young
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.204-211
    • /
    • 2020
  • The era of the 4th industrial revolution is a complex environment in which the cyber world and the physical world are integrated and interacted. In order to successfully implement and be sustainable the 4th industrial revolution of hyper-connectivity, hyper-convergence, and hyper-intelligence, not only the technological aspects that implemented digitalization but also the social aspects must be recognized and dealt with as important. There are socio-technical systems and socio-technical systems theory as concepts that describe systems involving complex interactions between the environmental aspects of human, mechanical and tissue systems. This study confirmed how the Socio-technical System was applied in the research literature for the last 10 years through machine learning-based analysis. Eight clusters were derived by performing co-occurrence keywords network analysis, and 13 research topics were derived and analyzed by performing a structural topic model. This study provides consensus and insight on the social and technological perspectives necessary for the sustainability of the 4th industrial revolution.

Automatic Extraction of 2-Dimensional Finite Element Connectivities by Search Technique (탐색기법을 이용한 2차원 유한요소 연결관계의 자동추출)

  • 김한수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.329-336
    • /
    • 2000
  • A method for automatic extraction of 2-dimensional finite element connectivities by searching the shortest closed path from a certain node to the starting node was developed. Only the best path among the possible paths was probed. The uniqueness and validity of the extracted path were examined. The proposed method was proved to be complete. Examples show that the proposed method can extract elements exactly from the irregular mesh which can not be handled easily by the conventional automatic mesh generation.

  • PDF

Effective Nonlinear Analysis of Coupled Wall Structures using Multi-Level Substructuring (다중분할구조기법을 이용한 병렬전단벽의 효율적인 비선형 해석)

  • 김호수;홍성목;윤성준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.65-72
    • /
    • 1994
  • This study presents the application of multi-level substructuring for the effective nonlinear analysis of coupled wall structures. Also, the transition elements with 8 or 12 d. o. f, 5-node plane stress elements and concrete nonlinear model are considered as the basic finite elements of substructuring. In particular, the concept of localized nonlinearity is considered for the probable nonlinear zones of the structure, and the effective bottom-up and top-down process are presented through connectivity trees. The nonlinear analysis based on localized nonlinearity and multi-level substructuring, compared with the complete nonlinear analysis of the structure, gives the greater saving effects in computational efforts and cost.

  • PDF

A Crack Propagation Analysis Algorithm Using Meshless Particle Method (무요소절점범을 이용한 균열진전해석 알고리즘 계발)

  • 이상호;이진우;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.53-59
    • /
    • 1998
  • A new algorithm using meshless particle method for the analysis of crack propagation problems is presented. The meshless particle method requires only a set of nodes and the description of boundaries in its formulation. The method is particulary useful for crack propagation problems due to the absence of any predefined element connectivity. Formulation procedures for the construction of displacement and shape functions are described. A numerical integration scheme and a strategy for the consideration of crack propagation are also described. Numerical examples show that the proposed method is very convenient and efficient in modeling crack problems and can guarantee the accuracy of solution in crack propagation analysis.

  • PDF

Contribution of Reinforced Concrete Floor Slabs to Lateral Behavior of Tall Buildings

  • Rehmanjee, Yasmin;Leslie, Benjamin;Lamianski, Dmitri;Chafart, Manuel
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2022
  • This paper focuses on how the coupling of the columns and walls through the structural slab contributes to the overall stiffness and strength of lateral systems. The rationale and procedures behind the design approach, which may offer a shift from more conventional assumptions made regarding compatibility and connectivity of gravity and lateral structural systems, will be introduced. The impacts on serviceability and strength design will be discussed, and observations on key design and analysis approaches will be featured. Mass and stiffness assumptions will also be reviewed. A case study on the topic will be presented describing implementation of slab coupling into engineering of a building project.

Discussion for Policy Change of the Research Council System in Science and Technology adopting Structural Equation Model (구조방정식 모형을 활용한 과학기술 연구회제도의 정책변동 관리방안)

  • Jang, Mun Yeong;Kim, Pang Ryong;Yi, Chan-Goo
    • Journal of Korea Technology Innovation Society
    • /
    • v.22 no.3
    • /
    • pp.475-502
    • /
    • 2019
  • This study, in order to derive the implications for managing policy changes in the research council system, were analyzed together with research council functions changes as the sub-policy means of achieving the its policy objectives as the excellence of Government-funded Research Institutes (GRIs), and recognition survey of the members of GRIs in the its functions and roles. Through this process, it was intended to derive and discuss ways to organizational change of research council system, to adjust the policy means (autonomy, responsibility and connectivity) to achieve the policy objectives or to redesign the functions of the research council as a sub-policy means. The research method of this study was to establish and analyze the Structural Equation Model (SEM) based on a survey of the members of the GRIs. In addition, it attempted to supplement the limitations of quantitative research methods by analyzing the change process of policy measures with the survey. This policy change management plan of the research council system is expected to contribute to the of a policy formulation necessary for enhancing roles based on autonomy and securing independence in the GRIs, and establishing a direction for development of its management.

Electrophoretic Tissue Clearing and Labeling Methods for Volume Imaging of Whole Organs

  • Kim, Dai Hyun;Ahn, Hyo Hyun;Sun, Woong;Rhyu, Im Joo
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.134-139
    • /
    • 2016
  • Detailed structural and molecular imaging of intact organs has incurred academic interest because the associated technique is expected to provide innovative information for biological investigation and pathological diagnosis. The conventional methods for volume imaging include reconstruction of images obtained from serially sectioned tissues. This approach requires intense manual work which involves inevitable uncertainty and much time to assemble the whole image of a target organ. Recently, effective tissue clearing techniques including CLARITY and ACT-PRESTO have been reported that enables visualization of molecularly labeled structures within intact organs in three dimensions. The central principle of the methods is transformation of intact tissue into an optically transpicuous and macromolecule permeable state without loss of intrinsic structural integrity. The rapidly evolving protocols enable morphological analysis and molecular labeling of normal and pathological characteristics in large assembled biological systems with single-cell resolution. The deep tissue volume imaging will provide fundamental information about mutual interaction among adjacent structures such as connectivity of neural circuits; meso-connectome and clinically significant structural alterations according to pathologic mechanisms or treatment procedures.

Effects of Perimeter to Core Connectivity on Tall Building Behavior

  • Besjak, Charles;Biswas, Preetam;Petrov, Georgi I.;Streeter, Matthew;Devin, Austin
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The Pertamina Energy Tower (PET) and Manhattan West North Tower (MWNT) are two supertall towers recently designed and engineered by Skidmore, Owings & Merrill (SOM). The structural system for both buildings consists of an interior reinforced concrete core and a perimeter moment frame system, which is primarily structural steel. As is typical for tall towers with both concrete and steel elements, staged construction analysis was performed in order to account for the long term effects of creep and shrinkage, which result in differential shortening between the interior concrete core and steel perimeter frame. The particular design of each tower represents two extremes of behavior; PET has a robust connection between the perimeter and core in the form of three sets of outriggers, while the perimeter columns of MWNT do not reach the ground, but are transferred to the core above the base. This paper will present a comparison of the techniques used during the analysis and construction stages of the design process with the goal of understanding the differences in structural behavior of these two building systems in response to the long term effects of creep and shrinkage. This paper will also discuss the design and construction techniques implemented in order to minimize the differential shortening between the interior and exterior over the lifespan of these towers.

An Efficient Partial Reanalysis Algorithm for the Locally Changed Structures (부분적 강성 변화에 따른 효율적 부분 재해석 알고리즘)

  • Kim Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.459-467
    • /
    • 2004
  • This paper presents an efficient reanalysis algorithm, named PRAS (Partial Reanalysis algorithm using Adaptable Substructuring), for the partially changed structures. The algorithm recalculates directly any displacement or member force under consideration in real time without a full reanalysis in spite of local changes in member stiffness or connectivity_ The key procedures consists of 1) partitioning the whole structure into the changed part and the unchanged part, 2) condensing the internal degrees of freedom and forming the unchanged part substructure, 3) assembling and solving the new stiffness matrix from the unchanged part substructure and the changed members.

Design of Vam Cong Cable Stayed Bridge in Vietnam (베트남 밤콩 사장교의 설계)

  • Lee, Yong-Jin;Kang, Jeong-Woon;Bae, Sang-Woon;Yun, Yeon-Suk;Lho, Byeong-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.120-127
    • /
    • 2013
  • Vam Cong Cable Stayed Bridge which has 450m main span length is one of the Central Mekong Delta Region Connectivity Project and is located in Cuu Long Delta Region. It has steel-concrete composite girder with 4 lane and the type of cable is multi strand cable. The improved H-shape pylon and cast-in-place bored piles were applied. High strength concrete is applied for pylon, precast concrete slab and Cast-in-Situ concrete pile to ensure the structural safety. The present paper describe the design specifications and main features of Vam Cong Cable Stayed Bridge design.