• Title/Summary/Keyword: Structural BIM

Search Result 213, Processing Time 0.016 seconds

Synthesis and Electrolyte Characterization of 1-Benzyl-3-butylimidazolium Hydroxide Ionic Liquid (1-Benzyl-3-butylimidazolium Hydroxide 이온성액체 합성 및 전해질 특성 조사)

  • Salman, Muhammad;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.603-606
    • /
    • 2020
  • A hydrophilic alkaline room temperature ionic liquid electrolyte (RT-IL) carrying hydroxide ion as an anion and 1-benzyl-3-butylimidazolium as a cation was synthesized. Electrochemical, physical and structural properties of the synthesized RT-IL were characterized using cyclic voltammetry, ionic conductivity, viscosity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR, and 1H-NMR measurements. High ionic conductivity and low viscosity characteristics comparable to 0.1 M KCl electrolyte solution were achieved for the RT-IL in addition to a wide electrochemical potential window of about 4.4 V. The results indicate that the RT-IL is promising for future applications as an alternative electrolyte to energy and environmental research fields.

Analysis of the Effect of Corner Points and Image Resolution in a Mechanical Test Combining Digital Image Processing and Mesh-free Method (디지털 이미지 처리와 강형식 기반의 무요소법을 융합한 시험법의 모서리 점과 이미지 해상도의 영향 분석)

  • Junwon Park;Yeon-Suk Jeong;Young-Cheol Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • In this paper, we present a DIP-MLS testing method that combines digital image processing with a rigid body-based MLS differencing approach to measure mechanical variables and analyze the impact of target location and image resolution. This method assesses the displacement of the target attached to the sample through digital image processing and allocates this displacement to the node displacement of the MLS differencing method, which solely employs nodes to calculate mechanical variables such as stress and strain of the studied object. We propose an effective method to measure the displacement of the target's center of gravity using digital image processing. The calculation of mechanical variables through the MLS differencing method, incorporating image-based target displacement, facilitates easy computation of mechanical variables at arbitrary positions without constraints from meshes or grids. This is achieved by acquiring the accurate displacement history of the test specimen and utilizing the displacement of tracking points with low rigidity. The developed testing method was validated by comparing the measurement results of the sensor with those of the DIP-MLS testing method in a three-point bending test of a rubber beam. Additionally, numerical analysis results simulated only by the MLS differencing method were compared, confirming that the developed method accurately reproduces the actual test and shows good agreement with numerical analysis results before significant deformation. Furthermore, we analyzed the effects of boundary points by applying 46 tracking points, including corner points, to the DIP-MLS testing method. This was compared with using only the internal points of the target, determining the optimal image resolution for this testing method. Through this, we demonstrated that the developed method efficiently addresses the limitations of direct experiments or existing mesh-based simulations. It also suggests that digitalization of the experimental-simulation process is achievable to a considerable extent.

A Study on the Application of RTLS Technology for the Automation of Spray-Applied Fire Resistive Covering Work (뿜칠내화피복 작업 자동화시스템을 위한 RTLS 기술 적용에 관한 연구)

  • Kim, Kyoon-Tai
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • In a steel structure, spray-applied fire resistive materials are crucial in preventing structural strength from being weakened in the event of a fire. The quality control of such materials, however, is difficult for manual workers, who can frequently be in short supply. These skilled workers are also very likely to be exposed to environmental hazards. Problems with construction work such as this, which are specifically the difficulty of achieving quality control and the dangerous nature of the work itself, can be solved to some degree by the introduction of automated equipment. It is, however, very difficult to automate the work process, from operation to the selection of a location for the equipment, as the environment of a construction site has not yet been structured to accommodate automation. This is a fundamental study on the possibility of the automation of spray-applied fire resistive coating work. In this study, the linkability of the cutting-edge RTLS to an automation system is reviewed, and a scenario for the automation of spray-applied fire resistive coating work and system composition is presented. The system suggested in this study is still in a conceptual stage, and as such, there are many restrictions still to be resolved. Despite this fact, automation is expected to have good effectiveness in terms of preventing fire from spreading by maintaining a certain level of strength at a high temperature when a fire occurs, as it maintains the thickness of the fire-resistive coating at a specified level, and secures the integrity of the coating with the steel structure, thereby enhancing the fire-resistive performance. It also expected that if future research is conducted in this area in relation to a cutting-edge monitoring TRS, such as the ubiquitous sensor network (USN) and/or building information model (BIM), it will contribute to raising the level of construction automation in Korea, reducing costs through the systematic and efficient management of construction resources, shortening construction periods, and implementing more precise construction