• Title/Summary/Keyword: Strongly coupled

Search Result 231, Processing Time 0.021 seconds

EXISTENCE OF POSITIVE SOLUTIONS FOR THE SECOND ORDER DIFFERENTIAL SYSTEMS WITH STRONGLY COUPLED INTEGRAL BOUNDARY CONDITIONS

  • Lee, Eun Kyoung
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.651-660
    • /
    • 2018
  • This paper concerned the existence of positive solutions to the second order differential systems with strongly coupled integral boundary value conditions. By using Krasnoselskii fixed point theorem, we prove the existence of positive solutions according to the parameters under the proper nonlinear growth conditions.

POSITIVE SOLUTIONS FOR THE SECOND ORDER DIFFERENTIAL SYSTEM WITH STRONGLY COUPLED INTEGRAL BOUNDARY CONDITION

  • You-Young Cho;Jinhee Jin;Eun Kyoung Lee
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.37-50
    • /
    • 2024
  • We establish the existence, multiplicity and uniqueness of positive solutions to nonlocal boundary value systems with strongly coupled integral boundary condition by using the global continuation theorem and Banach's contraction principle.

3D Nonlinear Fully Coupled Simulation of Cable and Tow-fish System (케이블-수중 예인체 시스템의 3차원 비선형 완전 연성해석)

  • Go, Gwangsoo;Lee, Euntaek;Ahn, Hyung Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.458-467
    • /
    • 2016
  • In this paper, a strongly coupled method for investigating the interaction between a cable and tow-fish is presented. The nodal position finite element method was utilized to analyze the nonlinear cable dynamics, and 6DOF equations of motion were employed to describe the 3D rigid body motion of the tow-fish. Combining cable and tow-fish systems into a single formulation allowed the two nonlinear systems to be strongly coupled into a unified nonlinear system. This strongly coupled system was numerically integrated in the time domain using a predictor/multi-corrector Newmark algorithm. To demonstrate the validity, efficacy, and applicability of the current approach, two different scenarios (virtual and sea trial) were simulated, and the simulation results were validated using the physical plausibility and the sea trial test.

Strongly Coupled Method for 2DOF Flutter Analysis (강성 결합 기법을 통한 2계 자유도 플러터 해석)

  • Ju, Wan-Don;Lee, Gwan-Jung;Lee, Dong-Ho;Lee, Gi-Hak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • In the present study, a strongly coupled analysis code is developed for transonic flutter analysis. For aerodynamic analysis, two dimensional Reynolds-Averaged Navier-Stokes equation was used for governing equation, and ε-SST for turbulence model, DP-SGS(Data Parallel Symmetric Gauss Seidel) Algorithm for parallelization algorithm. 2 degree-of-freedom pitch and plunge model was used for structural analysis. To obtain flutter response in the time domain, dual time stepping method was applied to both flow and structure solver. Strongly coupled method was implemented by successive iteration of fluid-structure interaction in pseudo time step. Computed results show flutter speed boundaries and limit cycle oscillation phenomena in addition to typical flutter responses - damped, divergent and neutral responses. It is also found that the accuracy of transonic flutter analysis is strongly dependent on the methodology of fluid-structure interaction as well as on the choice of turbulence model.

COMPARISON OF COUPLING METHODS FOR NAVIER-STOKES EQUATIONS AND TURBULENCE MODEL EQUATIONS (Navier-Stokes 방정식과 난류모델 방정식의 연계방법 비교)

  • Lee, Seung-Soo;Ryu, Se-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.111-116
    • /
    • 2005
  • Two coupling methods for the Navier-Stokes equations and a two-equation turbulence model equations are compared. They are the strongly coupled method and the loosely coupled method. The strongly coupled method solves the Navier-Stokes equations and the two-equation turbulence model equations simultaneously, while the loosely coupled method solves the Navier-Stokes equation with the turbulence viscosity fixed and subsequently solves the turbulence model equations with all the flow quantities fixed. In this paper, performances of two coupling methods are compared for two and three-dimensional problems.

  • PDF

Strongly coupled partitioned six degree-of-freedom rigid body motion solver with Aitken's dynamic under-relaxation

  • Chow, Jeng Hei;Ng, E.Y.K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.320-329
    • /
    • 2016
  • An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE) outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%-80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.

Motion Estimation Using Feature Matching and Strongly Coupled Recurrent Module Fusion (특징정합과 순환적 모듈융합에 의한 움직임 추정)

  • 심동규;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.59-71
    • /
    • 1994
  • This paper proposes a motion estimation method in video sequences based on the feature based matching and anistropic propagation. It measures translation and rotation parameters using a relaxation scheme at feature points and object orinted anistropic propagation in continuous and discontinuous regions. Also an iterative improvement motion extimation based on the strongly coupled module fusion and adaptive smoothing is proposed. Computer simulation results show the effectiveness of the proposed algorithm.

  • PDF

Strongly coupling partitioned scheme for enhanced added mass computation in 2D fluid-structure interaction

  • Lefrancois, Emmanuel;Brandely, Anais;Mottelet, Stephane
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.235-254
    • /
    • 2016
  • A numerical model for fluid-structure interactions (abbr. FSI) is presented in the context of sloshing effects in movable, partially filled tanks to improve understanding of interactions between the fluid and the dynamics of a tank flexibly attached to a vehicle. The purpose of this model is to counteract the penalizing impact of the added mass effect on classical partitioned FSI coupling scheme: the proposed investigation is based on an added mass corrected version of the classical strongly coupled partitioned scheme presented in (Song et al. 2013). Results show that this corrected version systematically allows convergence to the coupled solution. In the rare cases where convergence is already obtained, the corrected version significantly reduces the number of iterations required. Finally, it is shown that the convergence limit imposed by added mass effect for the non-corrected coupling scheme, is directly dependent on the aspect ratio of the fluid domain and highly related to the precision order of the temporal discretization scheme.

A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (1st Report: Effects of Coupling on Natural Frequencies and their Modes) (디젤기관 추진축계의 연성진동에 관한 연구(제1보:연성이 고유진동수와 그의 모드에 미치는 영향))

  • 전효중;이돈출;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.95-106
    • /
    • 2001
  • When the crankshaft of diesel engine has more than 3 throws, which are arranged in a different plane, its vibration induces coupled motions, especially the coupled torsional and axial vibration. Nowadays, the torsional vibration which is influenced rather weak than axial one, can be theoretically calculated fairly accurately, but theoretical calculation results of the axial vibration which is influenced strongly from torsional vibration is not so good. To get accurate calculation results of axial vibration, coupled axial-torsional vibration must be treated. In this investigation, coupled effects of vibration of diesel engine propulsion shafting are analyzed theoretically and some simple calculation methods are also studied. On this first report, effects of coupling on natural frequencies and their modes are mainly studied, setting the each mass in 4 degrees of freedom.

  • PDF

Studies on Coupled Vibration of Diesel Engine Propulsion Shafting (디젤기관 추진축계의 연성진동에 관한 연구 (제1보:연성이 고유진동수와 그의 모드에 미치는 영향))

  • 김의간
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.60-71
    • /
    • 2000
  • When the crankshaft of Diesel engine has more than 3 throws which are arranged in a different plane its vibration induces coupled motions especially the coupled torsional and axial vibration. Nowadays the torsional vibration which is influenced rather weak than axial one can be theoretically calculated fairly accurately but theoretical calculation results of the axial vibration which is influenced strongly from torsional vibration is not so good. To get accurate calculation results of axial vibration coupled axial-torsional vibration must be treated. in this investigation coupled effects of vibration of Diesel engine propulsion shafting are analyzed theoretically and some more simple calculation methods are also studied. On this first report effects of coupling on natural frequencies and their modes are mainly studied setting the each mass in 4 degrees of freedom. later this problem may be studied again by setting each mass as 6 degrees of freedom.

  • PDF