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POSITIVE SOLUTIONS FOR THE SECOND ORDER

DIFFERENTIAL SYSTEM WITH STRONGLY COUPLED

INTEGRAL BOUNDARY CONDITION

You-Young Cho, Jinhee Jin, and Eun Kyoung Lee∗

Abstract. We establish the existence, multiplicity and uniqueness of pos-

itive solutions to nonlocal boundary value systems with strongly coupled
integral boundary condition by using the global continuation theorem and

Banach’s contraction principle.

1. Introduction

In this paper, we study the existence of the following differential system;

u′′(t) + λa1(t)f1(u(t), v(t)) = 0, t ∈ (0, 1),

v′′(t) + λa2(t)f2(u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = 0 = v(0),

u(1) =
∫ 1

0
(g1(s)u(s) + g2(s)v(s)) ds,

v(1) =
∫ 1

0
(g3(s)u(s) + g4(s)v(s)) ds,

(Pλ)

where fi ∈ C([0,∞) × [0,∞)), (0,∞)) and ai, gi ∈ L1((0, 1), [0,∞)), for i ∈
{1, 2, 3, 4}. We further assume that there exists an interval I ⊂ (0, 1) with pos-
itive measure such that ai(t) > 0 for all t ∈ I and we notice that fi(0, 0) > 0
for i = 1, 2.
Such differential equations with an integral boundary condition arise in various
areas of applied mathematics and physics like heat conduction, chemical en-
gineering, underground water flow, thermo-elasticity, hydro dynamic problems
and plasma phenomena. One may refer to [1], [2], [6], [7] and [10] for integral
boundary value problems and the references therein. Recently, many works have
been done for second order ordinary differential systems with integral boundary
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conditions ([3], [4], [5], [8], [9], [12], [13]), but most of papers considered the
differntial systems with uncoupled or weekly coupled boundary conditions.

In this paper, the problem (Pλ) has more general strongly coupled integral
boundary conditions, which makes the operator Sλ (see Section 2 for definition)
complicated and induces substantial difficulties in proving our results. Accord-
ing to the growth rates of fi (i = 1, 2), we proved the existence, nonexistence,
multiplicity and uniqueness of the positive solutions of (Pλ). Throughout this
paper, we assume the following hypotheses;

(H0) 0 <
∫ 1

0
sgi(s)ds < 1 for i = 1, 4 and

(1−
∫ 1

0

sg1(s)ds)(1−
∫ 1

0

sg4(s)ds)− (

∫ 1

0

sg2(s)ds)(

∫ 1

0

sg3(s)ds) > 0.

(H1′) fi,∞ := lim
|u|+|v|→∞

fi(u, v)

u+ v
= 0, for i = 1, 2.

(H1′′) 0 < fi,∞ <∞, for i = 1, 2.
(H1′′′) fi,∞ = ∞, for i = 1, 2.

This paper is organized as follows. In Section 2, we present the solution
operator to problem (Pλ) and introduce the well-known theorems such as global
continuation theorem and eigenvalue theorem which will be used to prove our
main result. In Section 3, the existence and multiplicity results are proven by
using the solution continuum. In Section 4, the uniqueness results are proven.
In Section 5, as an applications, the range of parameter for uniqueness are given
by using matlab.

2. Preliminary

In this section, we set up the operator equation for the problem (Pλ). From
(H0), we know that detA ̸= 0 when

A :=

(
1−

∫ 1

0
sg1(s)ds −

∫ 1

0
sg2(s)ds

−
∫ 1

0
sg3(s)ds 1−

∫ 1

0
sg4(s)ds.

)
.

Let

A−1 =

(
a11 a12
a21 a22

)
.

Here, we note that from (H0), aij > 0 for all i, j ∈ {1, 2}. Let us denote
E := C([0, 1],R) × C([0, 1],R) where E is the usual Banach space with the
norm ∥(u, v)∥ = ∥u∥∞ + ∥v∥∞, when ∥u∥∞ = supt∈[0,1] |u(t)|. Now, we define

S1,λ and S2,λ from E to C([0, 1],R) by

S1,λ(u, v)(t) := λ

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds,

and

S2,λ(u, v)(t) := λ

∫ 1

0

H2(t, s)a2(s)f2(u(s), v(s)) + tK2(s)a1(s)f1(u(s), v(s))ds,
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where

H1(t, s) = G(t, s) + t
∫ 1

0
G(τ, s)(a11g1(τ) + a12g3(τ))dτ,

H2(t, s) = G(t, s) + t
∫ 1

0
G(τ, s)(a21g2(τ) + a22g4(τ))dτ,

K1(s) =

∫ 1

0

G(τ, s)(a11g2(τ) + a12g4(τ))dτ,

K2(s) =

∫ 1

0

G(τ, s)(a21g1(τ) + a22g3(τ))dτ,

and

G(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

Now we define

Sλ(u, v)(t) := (S1,λ(u, v)(t), S2,λ(u, v)(t)).

Then Sλ : E → E is well defined and we notice that the problem (Pλ) is
equivalent to the following operator equation;

(u, v) = Sλ(u, v) on E. (1)

Let P = {(u, v) ∈ E : u(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0, 1]}. We recall I ⊂ (0, 1)
is a nondegenerate interval such that ai(t) > 0 for all t ∈ I and i = 1, 2. Let
γ = min{j∗, 1− j∗} where j∗ = inf I and j∗ = sup I. Here we define K by

K = {(w1, w2) ∈ P : min
I
wi(t) ≥ γ∥wi∥∞, for i = 1, 2}.

Then P and K are cones in E. It is clear that Sλ(P) ⊂ K and Sλ is completely
continuous on E, by standard argument.

Following remark will be used in the proof for our results.

Remark 1. It is easy to check that

t(1− t)s(1− s) ≤ G(t, s) ≤ s(1− s), t, s ∈ (0, 1). (2)

By using (2), we have

νs(1− s)t ≤ Hi(t, s) ≤ ρt, i = 1, 2 (3)

and

νs(1− s) ≤ Ki(s) ≤ ρ, i = 1, 2, (4)

where

ρ = max{1 + C1, 1 + C2, C3, C4},
and

ν = min{C1, C2, C3, C4}
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with C1 =
∫ 1

0
τ(1 − τ)(a11g1(τ) + a12g3(τ))dτ, C2 =

∫ 1

0
τ(1 − τ)(a21g2(τ) +

a22g4(τ))dτ, C3 =
∫ 1

0
τ(1 − τ)(a11g2(τ) + a12g4(τ))dτ and C4 =

∫ 1

0
τ(1 −

τ)(a21g1(τ) + a22g3(τ))dτ.

To prove our main results, we use the following well known theorems for the
existence of a global continuum of solutions and the existence of eigenvalues of
operator .

Theorem 2.1. ([14], Corollary 14.12) Let E be a Banach space with E ̸= {0}
and let P be an order cone in E. Consider

x = H(λ, x), (5)

where λ ∈ R+ and x ∈ P. If H : R+ × P → P is completely continuous and
H(0, x) = 0 for all x ∈ P, then C+(P), the component of solution set of (5)
containing (0, 0), is unbounded.

Definition 1. ([11]) Let E be a Banach space and P ⊂ E be a cone in E. Let
e ∈ P \ {0}. A mapping T : P → P is called e-positive if for every nonzero
x ∈ P a natural number n = n(x) and two positive number cx, dx can be found
such that

cxe ≤ Tnx ≤ dxe.

Recall that a real number λ is an eigenvalue of the operator T if there exists
a non-zero element x ∈ E such that Tx = λx.

Theorem 2.2. ([11]) Suppose that T : E → E is a e-positive, completely
continuous linear operator. If there exist ψ ∈ E \ (−P) and a constant c > 0
such that cTψ ≥ ψ, then the spectral radius r(T ) ̸= 0, and r(T ) is the unique
positive eigenvalue with its eigenfunction in P.

3. Existence and Multiplicity

In this section, we establish the existence and multiplicity results for positive
solutions of (Pλ).

Lemma 3.1. Assume (H1′). For any closed bounded interval J = [α, β] ⊂
[0,∞), there exists MJ > 0 such that for all λ ∈ J, all possible solution (u, v)
of (Pλ) satisfy ∥(u, v)∥ < MJ .

Proof. Suppose on the contrary that there exist a sequence (λn) ⊂ J such that
(Pλn

) has positive solutions (un, vn) with ∥(un, vn)∥ → ∞. Let µ ∈ (0, 1
β(Q1+Q2)

),

with

Q1 =

∫ 1

0

h1(s)a1(s) +K1(s)a2(s)ds and

Q2 =

∫ 1

0

h2(s)a2(s) +K2(s)a1(s)ds,
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where

h1(s) = G(s, s) +
∫ 1

0
G(τ, s)(a11g1(τ) + a12g3(τ))dτ and

h2(s) = G(s, s) +
∫ 1

0
G(τ, s)(a21g2(τ) + a22g4(τ))dτ.

From (H1′), there exists a constant lµ > 0 such that fi(u, v) < µ(u+ v) for all
u+ v > lµ. Let

mµ := max{ max
(u,v)∈[0,lµ]×[0,lµ]

f1(u, v), max
(u,v)∈[0,lµ]×[0,lµ]

f2(u, v)},

An := {t ∈ [0, 1] | un(t) + vn(t) ≤ lµ} and

Bn := {t ∈ [0, 1] | un(t) + vn(t) > lµ}.

Then we obtain

un(t) ≤ λn

∫ 1

0

h1(s)a1(s)f1(un(s), vn(s)) +K1(s)a2(s)f2(un(s), vn(s))ds

≤ λn

∫
An

mµ (h1(s)a1(s) +K1(s)a2(s)) ds

+ λn

∫
Bn

µ (h1(s)a1(s) +K1(s)a2(s)) (un(s) + vn(s))ds

≤ λnmµQ1 + λnµQ1(∥un∥∞ + ∥vn∥∞)

and thus ∥un∥∞ ≤ λnmµQ1+λnµQ1(∥un∥∞+∥vn∥∞). By similar computation
for vn, we have ∥vn∥∞ ≤ λnmµQ2 + λnµQ2(∥un∥∞ + ∥vn∥∞). By adding two
inequalities, we have ∥un∥∞+∥vn∥∞ ≤ λnmµ(Q1+Q2)+λnµ(Q1+Q2)(∥un∥∞+
∥vn∥∞) and

1

β
≤ 1

λn
≤ mµ(Q1 +Q2)

∥un∥∞ + ∥vn∥∞
+ µ(Q1 +Q2).

By taking limit n→ ∞, from the choice of µ, we have following contradiction,

1

β
≤ µ(Q1 +Q2) <

1

β
.

□

With this Lemma, we have the following first existence result.

Theorem 3.2. Suppose that (H0) and (H1′) hold. Then (Pλ) has a positive
solution for all λ > 0.

Proof. Define H(λ, (u, v)) = Sλ(u, v), then H : R+ × P → P is completely
continuous and H(0, (u, v)) = 0 for all (u, v) ∈ P. By Theorem 2.1, there
exists an unbounded continuum C+(P), the component of the solution set of
(u, v) = H(λ, (u, v)) containing (0, (0, 0)). Since fi(0, 0) > 0, if (λ, (u, v)) in
C+(P) and λ > 0, then (u, v) is positive solution to problem (Pλ). By Lemma
3.1, (Pλ) has a positive solution for all λ > 0 (see Figure 1). □
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Figure 1. Solution continuum : fi,∞ = 0

Lemma 3.3. Suppose that either (H1′′) or (H1′′′) hold. Then there exists a
positive constant λ̄ > 0 such that (Pλ) has no positive solution for all λ > λ̄.

Proof. Suppose on the contrary that there exist λn > 0 such that λn → ∞
and (Pλn

) has a positive solution (un, vn). From fi(0, 0) > 0 and (H1′′) (or
(H1′′′)), we can choose a constant σ > 0 such that fi(u, v) > σ(u + v) for all
(u, v) ∈ [0,∞) × [0,∞) and i = 1, 2. By using (3), (4) and the fact (un, vn) =
Sλn(un, vn) ∈ K, we obtain

∥un∥∞ + ∥vn∥∞ ≥ ∥un∥∞ ≥ |un(j∗)|

= λn

∫ 1

0

H1(j∗, s)a1(s)f1(un(s), vn(s)) + j∗K1(s)a2(s)f2(un(s), vn(s))ds

≥ λn

∫ 1

0

νj∗s(1− s)a1(s)f1(un(s), vn(s)) + νj∗s(1− s)a2(s)f2(un(s), vn(s))ds

≥ λnνj∗

∫ j∗

j∗

s(1− s)(a1(s) + a2(s))σ(un(s) + vn(s))ds

≥ λnγνj∗σ(

∫ j∗

j∗

s(1− s)(a1(s) + a2(s))ds)(∥un∥∞ + ∥vn∥∞).

Thus, we have λn ≤
(
γνj∗σ(

∫ j∗
j∗
s(1− s)(a1(s) + a2(s))ds)

)−1

, which contra-

dicts to λn → ∞. □

Lemma 3.4. Assume (H1′′′). For any closed bounded interval J = [α, β] ⊂
(0,∞), there exists BJ > 0 such that for all λ ∈ J, all possible solutions (u, v)
satisfy ∥(u, v)∥ < BJ .

Proof. Suppose on the contrary that there exists a sequence (λn) ⊂ J such
that (Pλn) has a positive solution (un, vn) with ∥un∥∞ + ∥vn∥∞ → ∞. Choose
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constant η > 0 such that

αηνj∗γ

(∫ j∗

j∗

s(1− s)(a1(s) + a2(s))ds

)
> 1.

From (H1′′′), there exists R1 > 0 such that fi(u, v) ≥ η(u+v) for u+v ≥ R1 and
i = 1, 2. From ∥un∥∞ + ∥vn∥∞ → ∞, un(t) + vn(t) ≥ γ(∥un∥∞ + ∥vn∥∞) ≥ R1

for sufficiently large n and t ∈ [j∗, j
∗]. For such a large n, from the choice of

η > 0 and by the almost same calculation as in the proof of Lemma 3.3, we get
the following contradiction,

∥un∥∞ + ∥vn∥∞ ≥ ∥un∥∞ ≥ |un(j∗)|

= λn

∫ 1

0

H1(j∗, s)a1(s)f1(un(s), vn(s)) + j∗K1(s)a2(s)f2(un(s), vn(s))ds

≥ λnνj∗

∫ j∗

j∗

s(1− s)a1(s)f1(un(s), vn(s)) + s(1− s)a2(s)f2(un(s), vn(s))ds

≥ λnνj∗

∫ j∗

j∗

(s(1− s)a1(s) + s(1− s)a2(s))η(un(s) + vn(s))ds

≥ αηνj∗γ

∫ j∗

j∗

s(1− s)(a1(s) + a2(s))ds(∥un∥∞ + ∥vn∥∞)

> ∥un∥∞ + ∥vn∥∞.

□

With those Lemmas, we have the following the multiplicity result.

Theorem 3.5. Suppose that (H0) and (H1′′′) hold. Then there exist λ∗ ≤ λ̄ <
∞ such that (Pλ) has two positive solutions (ūλ, v̄λ) and (uλ, vλ) for 0 < λ < λ∗

and no positive solution for λ > λ̄. Moreover, ∥(uλ, vλ)∥ → 0 and ∥(ūλ, v̄λ)∥ →
∞ as λ→ 0+.

Proof. From (H0) and fi(0, 0) > 0, as in the proof of Theorem 3.2, we know
that there exists an unbounded continuum C+(P), the component of the positive
solution set of (u, v) = H(λ, (u, v)) = Sλ(u, v) containing (0, (0, 0)). Then by
Lemma 3.3 and Lemma 3.4, (Pλ) has two positive solutions (ūλ, v̄λ) and (uλ, vλ)
for 0 < λ < λ∗ and no positive solution for λ > λ̄. Moreover, ∥(uλ, vλ)∥ → 0
and ∥(ūλ, v̄λ)∥ → ∞ as λ→ 0+ (see Figure 2). □

4. Uniqueness

In this section, we give a hypothesis which will be used for our uniqueness
result.
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Figure 2. Solution continuum : fi,∞ = ∞

(H2) There exists a = (a, b, c, d) ∈ [0,∞)4 with a2+b2+c2+d2 ̸= 0 such that

|f1(u1, v1)− f1(u2, v2)| ≤ a|u1 − u2|+ b|v1 − v2| and
|f2(u1, v1)− f2(u2, v2)| ≤ c|u1 − u2|+ d|v1 − v2|.

For a = (a, b, c, d) ∈ [0,∞)4 with a2 + b2 + c2 + d2 ̸= 0, define an operator
Ta : E → E by

Ta(u, v) := (Ta,1(u, v), Ta,2(u, v)), (6)

where operators Ta,1, and Ta,2 : E → C[0, 1] are defined by

Ta,1(u, v)(t) =

∫ 1

0

H1(t, s)a1(s)(au(s) + bv(s))ds+ t

∫ 1

0

K1(s)a2(s)(cu(s) + dv(s))ds,

Ta,2(u, v)(t) =

∫ 1

0

H2(t, s)a2(s)(cu(s) + dv(s))ds+ t

∫ 1

0

K2(s)a1(s)(au(s) + bv(s))ds.

Then Ta : E → E is completely continuous and linear operator.

Lemma 4.1. Suppose that (H2) holds. Then for the operator Ta defined by
(6), there is a unique positive eigenvalue r(Ta) with its eigenfunction in P.

Proof. For a nonzero (u, v) ∈ P, by (3) and (4),

Ta,1(u, v)(t) =

∫ 1

0

H1(t, s)a1(s)(au(s) + bv(s))ds+ t

∫ 1

0

K1(s)a2(s)(au(s) + bv(s))ds

≤ ρt

∫ 1

0

a1(s)(au(s) + bv(s))ds+ ρt

∫ 1

0

a2(s)(cu(s) + dv(s))ds

= ρt

∫ 1

0

(aa1(s) + ca2(s))u(s)ds+ ρt

∫ 1

0

(ba1(s) + da2(s))v(s)ds

= d(u,v)t,(7)
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where d(u,v) = ρ
(∫ 1

0
(aa1(s) + ca2(s))u(s)ds+

∫ 1

0
(ba1(s) + da2(s))v(s)ds

)
and

Ta,1(u, v)(t)

≥ νt

∫ 1

0

s(1− s)a1(s)(au(s) + bv(s))ds+ νt

∫ 1

0

s(1− s)a2(s)(cu(s) + dv(s))ds

= νt

∫ 1

0

s(1− s)(aa1(s) + ca2(s))u(s)ds+ νt

∫ 1

0

s(1− s)(ba1(s) + da2(s))v(s)ds

= c(u,v)t,(8)

where c(u,v) = ν
(∫ 1

0
s(1− s)(aa1(s) + ca2(s))u(s) + (ba1(s) + da2(s))v(s)ds

)
.

From (7) and (8), we have

c(u,v)t ≤ Ta,1(u, v)(t) ≤ d(u,v)t.

By the same way, we have

c(u,v)t ≤ Ta,2(u, v)(t) ≤ d(u,v)t.

Then

c(u,v) · e ≤ Ta(u, v) ≤ d(u,v) · e, (9)

when e(t) = (t, t). By Theorem 2.2, this completes the proof. □

Remark 2. Let (φ,ψ) be a positive eigenfunction of Ta corresponding to r(Ta).
From Ta(φ,ψ) = r(Ta)(φ,ψ)) and (9), we notice that there exists c(φ,ψ) > 0
such that

t ≤ r(Ta)

c(φ,ψ)
φ(t) and t ≤ r(Ta)

c(φ,ψ)
ψ(t). (10)

Let E1 := {(u, v) ∈ E : |u(t)|
φ(t) and |v(t)|

ψ(t) are bounded for t ∈ [0, 1]}. Then
E1 ⊂ E and E1 is a Banach space with the norm

∥ (u, v) ∥1= max

{
sup
t∈[0,1]

|u(t)|
φ(t)

, sup
t∈[0,1]

|v(t)|
ψ(t)

}

and thus for (u, v) ∈ E1,

|u(t)| ≤∥ (u, v) ∥1 φ(t) and |v(t)| ≤∥ (u, v) ∥1 ψ(t). (11)

Lemma 4.2. Suppose (H0) and (H2). Then Sλ(E) ⊂ E1.



46 Y.CHO, J.JIN, AND E.K.LEE

Proof. For (u, v) ∈ E, by using (3), (4) and (10), we have

|S1,λ(u, v)(t)| = λ

∣∣∣∣∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

∣∣∣∣
≤ λ

∣∣∣∣∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s))ds−
∫ 1

0

H1(t, s)a1(s)f1(0, 0)ds

∣∣∣∣
+ λ

∣∣∣∣∫ 1

0

H1(t, s)a1(s)f1(0, 0)ds

∣∣∣∣
+ λt

∣∣∣∣∫ 1

0

K1(s)a2(s)f2(u(s), v(s))ds−
∫ 1

0

K1(s)a2(s)f2(0, 0)ds

∣∣∣∣
+ λt

∣∣∣∣∫ 1

0

K1(s)a2(s)f2(0, 0)ds

∣∣∣∣
≤ λρt

∣∣∣∣∫ 1

0

a1(s)(f1(u(s), v(s))− f1(0, 0))ds

∣∣∣∣+ λρt

∣∣∣∣∫ 1

0

a1(s)f1(0, 0)ds

∣∣∣∣
+ λρt

∣∣∣∣∫ 1

0

a2(s)(f2(u(s), v(s))− f2(0, 0))ds

∣∣∣∣+ λρt

∣∣∣∣∫ 1

0

a2(s)f2(0, 0)ds

∣∣∣∣
≤ λρt

(∫ 1

0

a1(s)(a|u(s)|+ b|v(s)|)ds+
∫ 1

0

a1(s)f1(0, 0)ds

+

∫ 1

0

a2(s)(c|u(s)|+ d|v(s)|)ds+
∫ 1

0

a2(s)f2(0, 0)ds

)
≤ r(Ta)

c(φ,ψ)
λρ

(∫ 1

0

a1(s)(a|u(s)|+ b|v(s)|+ f1(0, 0))

+a2(s)(c|u(s)|+ d|v(s)|+ f2(0, 0))ds)φ(t).

Similarly,

|S2,λ(u, v)(t)| ≤
r(Ta)

c(φ,ψ)
λρ

(∫ 1

0

a1(s)(a|u(s)|+ b|v(s)|+ f1(0, 0))

+a2(s)(c|u(s)|+ d|v(s)|+ f2(0, 0))ds)ψ(t).

Thus Sλ maps all of E into E1. □

Now, we give the following uniqueness result.

Theorem 4.3. Suppose (H0) and (H2). If λ < 1
r(Ta)

, then differential system

(Pλ) has a unique solution in E.

Proof. From Lemma 4.2, it suffices to show the uniqueness of a fixed point of
Sλ in E1. Note that Ta(φ,ψ) = r(Ta)(φ,ψ) means

r(Ta)φ(t) =

∫ 1

0

H1(t, s)a1(s)(aφ(s) + bψ(s))ds+ t

∫ 1

0

K1(s)a2(s)(cφ(s) + dψ(s))ds

(12)
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and

r(Ta)ψ(t) =

∫ 1

0

H2(t, s)a2(s)(cφ(s) + dψ(s))ds+ t

∫ 1

0

K2(s)a1(s)(aφ(s) + bψ(s))ds.

For (u1, v1), (u2, v2) ∈ E1, by using (11) and (12), we have

|S1,λ(u1, v1)(t)− S1,λ(u2, v2)(t)|

≤ λ

∣∣∣∣∫ 1

0

H1(t, s)a1(s)f1(u1(s), v1(s))ds−
∫ 1

0

H1(t, s)a1(s)f1(u2(s), v2(s))ds

∣∣∣∣
+ λt

∣∣∣∣∫ 1

0

K1(s)a2(s)f2(u1(s), v1(s))ds−
∫ 1

0

K1(s)a2(s)f2(u2(s), v2(s))ds

∣∣∣∣
≤ λa

∫ 1

0

H1(t, s)a1(s)|u1(s)− u2(s)|ds+ λb

∫ 1

0

H1(t, s)a1(s)|v1(s)− v2(s)|ds

+ λtc

∫ 1

0

K1(s)a2(s)|u1(s)− u2(s)|ds+ λtd

∫ 1

0

K1(s)a2(s)|v1(s)− v2(s)|ds

≤ λa

∫ 1

0

H1(t, s)a1(s) ∥ (u1, v1)− (u2, v2) ∥1 φ(s)ds

+ λb

∫ 1

0

H1(t, s)a1(s) ∥ (u1, v1)− (u2, v2) ∥1 ψ(s)ds

+ λtc

∫ 1

0

K1(s)a2(s) ∥ (u1, v1)− (u2, v2) ∥1 φ(s)ds

+ λtd

∫ 1

0

K1(s)a2(s) ∥ (u1, v1)− (u2, v2) ∥1 ψ(s)ds

≤ λ

(∫ 1

0

H1(t, s)a1(s)(aφ(s) + bψ(s))ds

+t

∫ 1

0

K1(s)a2(s)(cφ(s) + dψ(s))ds

)
∥ (u1, v1)− (u2, v2) ∥1

= λr(Ta) ∥ (u1, v1)− (u2, v2) ∥1 · φ(t).

Similarly,

|S2,λ(u1, v1)(t)− S2,λ(u2, v2)(t)| ≤ λr(Ta) ∥ (u1, v1)− (u2, v2) ∥1 · ψ(t).

For all (u1, v1), (u2, v2) ∈ E1,

∥ Sλ(u1, v1)− Sλ(u2, v2) ∥1≤ λr(Ta) ∥ (u1, v1)− (u2, v2) ∥1 .

Since λr(Ta) < 1, by Banach’s Contraction Principle, Sλ has a unique fixed
point in E1 and the proof is done. □

We remark that the hypothesis (H2) can be assumed with (H1′) or (H1′′)
but it cannot be assumed with (H1′′′) together. Thus we have following two
corollary results containing uniqueness.
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Corollary 4.4. Suppose that (H0), (H1′) and (H2) hold. Then (Pλ) has a
unique positive solution for λ ∈ (0, 1

r(Ta)
) and at least one positive solution for

λ ∈ [ 1
r(Ta)

,∞).

Proof. From Theorem 3.2 and Theorem 4.3, the result can be obtained (See
Figure 3). □

Figure 3. Solution continuum with uniqueness : fi,∞ = 0

Corollary 4.5. Suppose that (H0), (H1′′) and (H2) hold. Then there exist
1

r(Ta)
≤ λ̃ ≤ λ̄ such that (Pλ) has at least one positive solution for 0 < λ < λ̃,

a unique positive solution for 0 < λ < 1
r(Ta)

and no positive solution for λ > λ̄.

Proof. From (H0) and fi(0, 0) > 0, as in the proof of Theorem 3.2 and Theorem
3.5, we know that there exists an unbounded continuum C+(P), the compo-
nent of the positive solution set of (u, v) = H(λ, (u, v)) = Sλ(u, v) containing
(0, (0, 0)). By Lemma 3.3 and Theorem 4.3, the result can be obtained (See
Figure 4). □

5. Example

We give an example in which we can get the eigenvalue r(Ta) and the range
of the parameter for guaranting unique poisitve solution of the certain integral
boundary valued system.
Consider the system

u′′(t) + λ(cosu(t) + ln(1 + v2(t)) + 2) = 0, t ∈ (0, 1),

v′′(t) + λ(ln(1 + u2(t)) + arctan v(t) + 1) = 0, t ∈ (0, 1),

u(0) = 0 = v(0),

u(1) =
∫ 1

0
su(s) + v(s)ds,

v(1) =
∫ 1

0
u(s) + sv(s)ds.

(Eλ)
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Figure 4. Solution continuum with uniqueness : 0 < fi,∞ < 0

Let f1(u, v) = cosu + ln(1 + v2) + 2, f2(u, v) = ln(1 + u2) + arctan v + 1,
g1(t) = g4(t) = t, g2(t) = g3(t) = 1 and a1(t) = a2(t) = 1. Then fi(0, 0) > 0,
(H0), (H1′) and (H2) hold with a = (1, 1, 1, 1). Let (φ,ψ) be an eigenfunction
of Ta. i.e., Ta(φ,ψ) = r(Ta)(φ,ψ). For µ = 1

r(Ta)
, (φ,ψ) satisfies

−φ′′(t) = µφ(t) + µψ(t), t ∈ (0, 1),

−ψ′′(t) = µφ(t) + µψ(t), t ∈ (0, 1),

φ(0) = 0 = ψ(0),

φ(1) =
∫ 1

0
sφ(s) + ψ(s)ds,

ψ(1) =
∫ 1

0
φ(s) + sψ(s)ds.

By ordinary method, we have

φ(t) =
c1
2
sin
√
2µt+

c2
2
t and

ψ(t) =
c1
2
sin
√
2µt− c2

2
t.

From the boundary conditions,

φ(1) =

∫ 1

0

t(
c1
2
sin
√

2µt+
c2
2
t) + (

c1
2
sin
√
2µt− c2

2
t)dt and

ψ(1) =

∫ 1

0

(
c1
2
sin
√

2µt+
c2
2
t) + t(

c1
2
sin
√

2µt− c2
2
t)dt.

From the value of φ(1) + ψ(1), we have the equation

sin
√

2µ = − 2√
2µ

cos
√
2µ+

1

2µ
sin
√
2µ+

1√
2µ

and by using Matlab, µ ∼ 1.0369. By Corollary 4.4, (Eλ) has a positive solution
for all λ > 0 and (Eλ) has a unique solution for λ < 1

r(Ta)
= µ ∼ 1.0369.
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