• Title/Summary/Keyword: Stripping process

Search Result 160, Processing Time 0.028 seconds

The Influences of Process Parameters in Piercing with a High Aspect Ratio for Thick Aluminum Sheet (알루미늄 판재의 고 세장비 피어싱가공을 위한 작업변수의 영향)

  • Kim, J.G.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • The aspect ratio of a hole is defined as the ratio of the thickness to the diameter of the sheet metal. Most holes in the sheet metal industry are made by piercing. However, for thick sheets, which have an aspect ratio greater than 2, a machining process like drilling instead of piercing is usually used to make holes. In the current study, piercing, which is a shearing process, is evaluated to punch a hole with a high aspect ratio by using a newly designed die set-up. The piercing die was manufactured to prevent the punch from buckling and also to improve the alignment between the die components. An aluminum alloy sheet was selected for the experiments. The influence of several process parameters such as sheet thickness, clearance and stripping force were investigated. Experimentally, a hole with an aspect ratio of 5 was pierced. The resulting hole had a clean surface and the dimensional accuracy of pierced hole was considerably improved with decreasing clearance between punch and die. It is also shown that the larger penetration depth of the effective sheared surface can be achieved for high aspect ratio piercing relative to conventional piercing with a low aspect ratio.

Development of the DIW-$O_3$ Cleaning Technology Substituted for the Semiconductor Photoresist Strip Process using the SPM (SPM을 이용한 반도체 포토레지스트 제거 공정 대체를 위한 DIW-$O_3$ 방식 세정기술 개발)

  • Son, Yeong-Su;Ham, Sang-Yong
    • 연구논문집
    • /
    • s.33
    • /
    • pp.99-109
    • /
    • 2003
  • Recently the utilization of the ozone dissolved de-ionized water(DIW-$O_3$) in semiconductor wet cleaning process and photoresist stripping process to replace the conventional sulfuric acid and hydro peroxide mixture(SPM) method has been studied. In this paper, we propose the water-electrode type ozone generator which has the characteristics of the high concentration and purity to produce the high concentration DIW-$O_3$ for the photoresist strip process in the semiconductor fabrication. The proposed ozone generator has the dual dielectric tube structure of silent discharge type and the water is both used to electrode and cooling water. Through this study, we obtained the results of the 10.3 wt% of ozone gas concentration at the oxygen gas of 0.5 [liter/min.] and the DIW-$O_3$ concentration of 79.5 ppm.. Through the photoresist stripping test using the produced DIW-$O_3$, we confirmed that the photoresist coated on the silicon wafer was removed effectively in the 12 minutes.

  • PDF

Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer Using Supercritical CO2 Mixtures with Co-solvents and Surfactants: the Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer

  • You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2017
  • The supercritical $CO_2$ (sc-$CO_2$) mixture and the sc-$CO_2$-based Photoresist(PR) stripping(SCPS) process were applied to the removal of the post etch/ash PR residue on aluminum patterned wafers and the results were observed by scanning of electron microscope(SEM). In the case of MDII wafers, the carbonized PR was able to be effectively removed without pre-stripping by oxygen plasma ashing by using sc-$CO_2$ mixture containing the optimum formulated additives at the proper pressure and temperature, and the same result was also able to be obtained in the case of HDII wafer. It was found that the efficiency of SCPS of ion implanted wafer improved as the temperature of SCPS was high, so a very large amount of MEA in the sc-$CO_2$ mixture could be reduced if the temperature could be increased at condition that a process permits, and the ion implanted photoresist(IIP) on the wafer was able to be removed completely without pre-treatment of plasma ashing by using the only 1 step SCPS process. By using SCPS process, PR polymers formed on sidewalls of metal conductive layers such as aluminum films, titanium and titanium nitride films by dry etching and ashing processes were removed effectively with the minimization of the corrosion of the metal conductive layers.

  • PDF

The Optimization of Solvent Extraction Process of Iron Chloride Etching Waste Solution (염화철 에칭폐액의 용매추출공정 최적화에 관한 연구)

  • Park, Il-Jeong;Kim, Dae-Weon;Kim, Geon-Hong;Chae, Hong-jun;Lee, Sang-Woo;Jung, Hang-Chul
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • In this study, a new organophosphorus acid-based solvent (KMC-P) from KMC Co., Ltd. was used for the recovery of the iron chloride etching waste solution. In order to increase the extraction efficiency for the new solvent in the solvent extraction process, we selected the process variables and conducted the optimization experiment according to the DOE to investigate the correlation between the variables. Solvent concentration, pH, and O/A ratio were found to be factors affecting extraction and stripping efficiency. The optimum stripping efficiency was 69.7% when the solvent concentration was 29.4 wt%, the HCl addition amount was 0 mL, and the O/A ratio was 7, and the reliability was more than 86%.

Removal of Ammonia-Nitrogen Contained in Landfill Leachate by Ammonia Stripping(I) (암모니아 탈기공정을 이용한 침출수의 암모니아성 질소제거(I))

  • Lee, Byung-Jin;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1893-1904
    • /
    • 2000
  • Nitrogen compounds are one of the major pollutants which cause eutrophication problems of the river or lake and red tides problems of the ocean. Currently available technologies for the removal of nitrogen compounds are mostly biological treatment. However, biological treatment is only effective for the wastewater which contains low concentration of nitrogen compounds. Leachate from solid waste landfill or industrial wastewater which contains high concentration of nitrogen can not be effectively treated by most of the currently available biological treatment technologies. With this connection. the objective of this study is to examine the applicability of ammonia stripping technology for the removal of high concentration of ammonia nitrogen compounds of the leachate from solid waste landfill. It can be concluded that ammonia stripping technology which was placed before the biological treatment process was very effective for the removal of high concentration of ammonium compounds. The chemical cost for the ammonia stripping was 16 percent higher than MLE process, so other methods like sludge recycling are needed for the reduction of operation cost. Further details are discussed in this paper.

  • PDF

Recovery of Silver from Nitrate Leaching Solution of Silicon Solar Cells (실리콘 태양전지 질산침출액에서 LIX63를 이용한 은(Ag) 회수)

  • Cho, Sung-Yong;Kim, Tae-Young;Sun, Pan-Pan
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.39-45
    • /
    • 2021
  • Spent photovoltaic module is one of the important resource of silver, while related research concerning silver recovery remains limited. In our previous research, HNO3 was utilized to dissolve Ag(I) and Al(III) from the spent silicon solar cells. In order to recover Ag(I) from the leachate of a silicon solar cell, the present study made use of a nitrate solution containing Ag(I) and Al(III), which was subjected to a solvent extraction process with 5,8-diethyl-7-hydroxydodecan-6-oxime (LIX63). Ag(I) was selectively extracted with LIX63 over Al(III) from the nitrate leach solution. Subsequently, quantitative stripping of Ag(I) from the loaded LIX63 was performed by using 20% ammonia water. The McCabe-Thiele plots for the extraction and stripping isotherms of Ag(I) were also constructed. Extraction and stripping simulation tests confirmed an Ag(I) extraction and stripping efficiency of >99.99% and 98.9%, respectively with high purity Ag (99.998%) and Al (99.99%) solution. A process flow sheet for Ag(I) recovery from the nitrate leach solution was proposed.

Combination of air stripping and biological processes for landfill leachate treatment

  • Smaoui, Yosr;Bouzid, Jalel;Sayadi, Sami
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • Landfill waste decomposition generates a dark effluent named, leachate which is characterized by high organic matter content. To minimize these polluting effects, it becomes necessary to develop an effective landfill leachate treatment process. The objective of this study was to evaluate the performance of an innovative approach based on air stripping, anaerobic digestion (AD) and aerobic activated sludge treatment. A reduction of 80% of ammonia and an increase of carbon to nitrogen ratio to 25 were obtained, which is a suitable ratio for AD. This latter AD was performed in fixed bed reactor with progressive loading rate that reached 2 and 3.2 g COD/L/d for the raw and diluted leachate (1:2), respectively. The anaerobic treatment led to significant removal of chemical oxygen demand (COD) and biogas production, especially for the diluted leachate. The COD removal was of 78% for the raw leachate and a biogas production of 4 L/d with 70% methane content. The use of the diluted leachate led to 81% of COD removal and 7 L/d biogas with 75% methane content. It allowed a removal of 77% COD and more than 97% of the organic compounds present in the initial leachate sample.

Deep Impact: Molecular Gas Properties under Strong Ram Pressure Probed by High-Resolution Radio Interferometric Observations

  • Lee, Bumhyun;Chun, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.39.3-39.3
    • /
    • 2019
  • Ram pressure stripping due to the intracluster medium (ICM) is an important environmental process, which causes star formation quenching by effectively removing cold interstellar gas from galaxies in dense environments. The evidence of diffuse atomic gas stripping has been reported in several HI imaging studies. However, it is still under debate whether molecular gas (i.e., a more direct ingredient for star formation) can be also affected and/or stripped by ram pressure. The goal of this thesis is to understand the impact of ram pressure on the molecular gas content of cluster galaxies and hence star formation activity. To achieve this, we conducted a series of detailed studies on the molecular gas properties of three Virgo spiral galaxies with clear signs of active HI gas stripping (NGC 4330, NGC 4402, and NGC 4522) based on high-resolution CO data obtained from the Submillimeter Array (SMA) and Atacama Large Millimeter/submillimeter Array (ALMA). As a result, we find the evidence that the molecular gas disk also gets affected by ram pressure in similar ways as HI even well inside of the stellar disk. In addition, we detected extraplanar 13CO clumps in one of the sample, which is the first case ever reported in ram pressure stripped galaxies. By analyzing multi-wavelength data (e.g., Hα, UV, HI, and CO), we discuss detailed processes of how ram pressure affects star formation activities and hence evolution of cluster galaxies. We also discuss the origin of extraplanar 13CO, and how ram pressure can potentially contribute to the chemical evolution of the ICM.

  • PDF

Effect of Operating Condition of Stripping Process on Ammonia Removal for Pre-treatment of Swine Wastewater (축산폐수 전처리를 위한 암모니아 탈기공정의 운전조건이 암모니아 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.86-92
    • /
    • 2004
  • Lab-scale experiments have been carried out to investigate ammonia stripping with a modified spray tower for removing ammonia nitrogen from swine wastewater. The operating conditions such as initial pH, temperature, air flow, hole size of distributor determining the diameter of water drops, and influent solids concentration were closely examined focusing on removal efficiency of ammonia. As a result of the experiment, in order to achieve high rate of ammonia removal by the air stripping system, the air flow rate must be supplied at high rate with sufficiently high initial pH, temperature. The optimum operating condition to meet the residual ammonia concentration of 300 mg/L was the initial pH of 11.0 at $35^{\circ}C$ with the air flow rate of 20 L/min. It also showed that the smaller hole size is, the higher removal rate of ammonia is expected. However, when used a small sized distributor (2 mm), the flooding problem at the upper column occurred due to clogging of the hole. With regard to the influent solids concentration, it was showed that the lower concentration of solids, the higher removal rate of ammonia. The removal of particulate materials in influent led to improve the removal efficiency of ammonia, rather than to control the operating condition including initial pH, temperature, and air flow. The empirical correlation between KLa and operating parameters would be driven as, $K_{La}=(0.0003T-0.0047){\cdot}G^{0.3926}{\cdot}L^{-0.5169}{\cdot}C^{-0. 1849}$. The calculated $K_{La}$ from proposed formula can be used effectively to estimate the optimum reaction time and to calculate the volume of modified spray tower system.

Recovery of Li from the Lithium Containing Waste Solution by D2EHPA (리튬함유 폐액으로부터 D2EHPA에 의한 리튬의 회수)

  • Ahn, Hyo-Jin;Ahn, Jae-Woo;Lee, Ki-Woong;Son, Hyun-Tae
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.21-27
    • /
    • 2014
  • A study on the solvent extraction for the recovery of Li from lithium-containing waste solution was investigated using $D_2EHPA$ as an extractant. The experimental parameters, such as the pH of the aqueous solution, concentration of extractant and phase ratio were observed. Experimental results showed that the extraction percentage of Li was increased with increasing the equilibrium pH. More than 50% of Li was extracted in eq. pH 6.0 by 20% $D_2EHPA$. From the analysis of McCabe-Thiele diagram, 95% of Li was extracted by four extraction stage at phase ratio(O/A) of 3.0. Stripping of Li from the loaded organic phases can be accomplished by sulfuric acid as a stripping reagent and 90 ~ 120 g/L of $H_2SO_4$ was effective for the stripping of Li. Finially, Li was concentrated about 11.85 g/L by continuous stripping process, and then lithium carbonate was prepared by precipitation method.