• Title/Summary/Keyword: Strip Profile

Search Result 98, Processing Time 0.197 seconds

Prediction of Steady-state Strip Profile during Hot Rolling - PartⅡ: Development of a Mathematical Model (열연 공정 정상상태 판 프로파일 예측 - PartⅡ: 수식 모델 개발)

  • Lee, J. S.;Hwang, S. M.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2016
  • In the current study, we present a new model for the prediction of the strip profile and the residual stresses. This new approach is an analytical model that predicts the residual stresses from the effect of post-deformation. Since the residual stress cannot exceed the yield strength of the material, post-yielding may possibly occur in the post-deformation zone prior to the strip reaching the steady-state zone. The prediction accuracy of the proposed model is examined through comparison with the predictions from 3-D finite element (FE) simulations.

AN INTEGRATED FINITE ELEMENT COMPUTER SIMULATOR FOR THE PREDICTION OF ROLL AND STRIP PROFILE IN HOT STRIP ROLLING (열연중 판 및 롤 프로파일 예측 시뮬레이터 개발)

  • 류성룡;김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.301-307
    • /
    • 1999
  • A three dimensional finite element-based computer simulator is presented for the analysis of the thermomechanical behaviors of rolls and strip during hot strip rolling. The simulator is capable of predicting the strip profiles in a 4 high mill stand, and in particular, can account for the effect of bender forces and pair cross angles. The structure of the simulator as well as various numerical schemes employed are described. The capability of the simulator is demonstrated through applications to some selected set of process conditions.

  • PDF

Roll force and tension distribution along the width for the precision prediction of strip deformation (판 변형 정밀 예측을 위한 폭방향 압하력 및 tension 분포예측 모델 개발)

  • Kim Y. K.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.153-162
    • /
    • 2004
  • The force profile from strip to work roll is very important factor in deformation of roll. But It is not easy to predict the profile because strip crown affect its tendency. From finite element method result, some assumptions can be obtained and the roll force profile model is derived. Also the tension profile and lateral strain are derived. The prediction accuracy of the proposed model is examined through comparison with finite element calculation result.

  • PDF

Prediction of Three-Dimensional Strip Profile for 6-High Mill in Thin-Strip Rolling (6 단 압연기의 극박 압연공정에서 3 차원 판 형상 예측)

  • Lee, Sang-Ho;Song, Gil-Ho;Lee, Sung-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.855-861
    • /
    • 2011
  • We predict the rolled-strip profile for a 6-high mill using thin rolling theory and a numerical model. In the numerical model, we calculate the distributions of the contact pressures between the rolls and the rolling pressure between the strip and the work roll in the transverse direction using the geometric structure of the 6-high mill and the boundary conditions. We determine the distribution of the rolling pressure in the rolling direction via a thin-foil rolling model using Fleck's theory. We calculate the three-dimensional elastic deformation of the work roll using the pressures of the width and rolling directions. We then obtain the three-dimensional strip profile via the elastic deformation of the work roll during the rolling process. The profile is verified by a thin cold-rolling test and FE simulation.

A Self-Tuning PI Control System Design for the Flatness of Hot Strip in Finishing Mill Processes

  • Park, Jeong-Ju;Hong, Wan-Kee;Kim, Jong-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.379-387
    • /
    • 2004
  • A novel flatness sensing system which is called the Flatness Sensing Inter-stand Looper(FlatSIL) system is suggested and a self-tuning PI control system using the FlatSIL is designed for improving the flatness of hot strip in finishing mill processes. The FlatSIL system measures the tension along the direction of the strip width by using segmented rolls, and the tension profile is approximated through the tension of each segmented roll. The flatness control system is operated by using the tension profile. The proposed flatness control system as far as the tension profile-measuring device works for the full strip length during the strip rolling in finishing mills. The generalized minimum variance self-tuning (GMV S-T) PI control method is applied to control the flatness of hot strip which has a design parameter as weighting factor for updating the PI gains. Optimizing the design parameter in the GMV S-T PI controller, the Robbins-Monro algorithm is used. It is shown by the computer simulation and experiment that the proposed GMV S-T PI flatness control system has better performance than the fixed PI flatness control system.

Technology of profile and shape control in the 6-high Tandem cold Rolling Mill (연속 6단 냉간압연기에서 Profile 및 형상제어 압연기술)

  • 박해두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.142-149
    • /
    • 1999
  • Strip profile and shape control is one of the most important technologies in cold mill, especially for ultra-thin and wide cold strip. The 6-high mills, both of HCMW and UCMW mill, are known to be very effective for the shape controllability. The optimized values of these factors for set-up scheduling were analyzed and found that excellent strip control would be possible by controlling the combination of the influencing factors according to hot coil profile. The important considerations for operation were discussed for individual stand.

  • PDF

Development of Control System for Transversal Temperature of Strips in Hot Strip Mills (열간압연공정에서의 스트립 폭방향 온도제어 시스템 개발)

  • Choi, Jae-Chan;Lee, Sung-Jin;Park, Bong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1202-1215
    • /
    • 1996
  • In this study, in order to achieve the uniformity of mechanical properties and microstructures of a hot-rolled coil in the transversal direction, the edge mask device is newly device is newly developed and installed at the upper laminar-flow cooling head in the run out table, which controls the transversal temperature of strip with enco panel and bar edge heater. The device that is transversally movable prevents the temperature drop of strip edge by blocking the cooling water into the strip edge. So, the pattern of edge mask set-up condition of the device was derived by analyzing the characteristics of strip temperature and mechanical properties according to the on-line application of edge mask.

Development of 3-dimensional strip rolling analysis

  • Jiang, Zheng-Lian;Park, Hae-Doo;Chung, Jin-Hwan
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.253-256
    • /
    • 1997
  • Through right deduction of theoretical equations and some disposal technique, a 3-dimensional strip rolling coupled analysis software has been successfully developed in this paper, which considers strip plastic deformation and roll elastic deformation simultaneously. The calculated examples with different kinds of rolling conditions all conform to the reality, and results show that the developed 3-dimensional program is applicable to the wide strip.

  • PDF

The development of FE model for the precision prediction of strip profile in flat rolling (판 압연에서 판 형상 정밀 예측을 위한 유한요소 모델 개발)

  • Yun K. H.;Kim T. H.;Shin T. J.;Lee W. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.197-203
    • /
    • 2004
  • A full finite element (FE)-based approach is presented for the precision analysis of the strip profile in flat rolling. Basic FE models for the analysis of the mechanical behavior of the strip and of the rolls are described in detail. Also described is an iterative strategy for a rigorous treatment of the mechanical contact occurring at the roll-strip interface and at the roll-roll interface. Then, presented is an integrated FE process model for the coupled analysis of the mechanical behavior of the strip, work roll, and backup roll in four-high mill. A series of process simulation are conducted and the results are compared with the measurements made in hot and cold rolling experiments.

  • PDF

A study on Resistance Performance of the High-speed Planing Craft with Spray Strip (Spray Strip부착에 따른 고속 활주형선 저항특성 연구)

  • Park, Chung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.759-764
    • /
    • 2008
  • The planing craft is designed specifically to achieve comparatively high speed on the surface of the water. Most of planing crafts have installed the spray strip in decreasing of wave impaction and improving motion performance of rolling and pitching et al. It is known to reduce the spray and frictional resistance by the effect of lift and improvement of wave profile in high speed. In this paper, the high speed planing crafts with & without spray strip in bottom were performed to compare the resistance performance by model-test. In conclusion, the high speed planing crafts with spray strip in bottom was proved to effect of the resistance decrement of $3.0{\sim}5.0%$.