• 제목/요약/키워드: String Vibration

검색결과 61건 처리시간 0.029초

길이가 변하는 현의 자유진동 특성 (Free Vibration Characteristics of a String with Time-Varying Length)

  • 이승엽;박상규
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.906-913
    • /
    • 1999
  • Time-dependent period and energy of free vibration of a string, whose length varies with time at a constant rate, are investigated by a traveling wave method. When the string length is increased, the vibration period increase, but the free vibration energy decrease with time. However, when the string undergoes retraction, the vibration energy increases with time. String tension together with non-zero instantaneous velocity at the moving boundary results in energy variation. Analytical solutions by the traveling wave method are compared with previous results using the perturbation method and Kotera's approach.

  • PDF

첼로 현의 진동분석 (Analysis of String Vibraion in Cello)

  • 최기상
    • 한국음향학회지
    • /
    • 제27권8호
    • /
    • pp.395-402
    • /
    • 2008
  • 바이올린, 비올라, 첼로, 콘트라베이스 등 비올족 현악기는 현의 진동이 브리지를 통해 몸체로 전달되고 공명을 일으켜 큰 소리를 내게 되어 있다. 즉 현악기에서는 현의 진동이 음원이 되며 현의 재질, 구조와 경계조건이 음색에 결정적 영향을 미치게 된다. 본 연구에서는 첼로에서 한쪽 끝은 고정되고 다른 끝은 손가락에 의해 운지된 현의 진동을 양 끝이 고정된 개방현의 진동과 비교하여 해석하고 실험하였다. 해석과 실험의 결과는 운지된 현의 진동이 양단이 고정된 개방현의 진동과 크게 다른 것을 보여준다. 또 운지된 현에서 손가락 끝과 현의 접촉 조건에 의해서도 음색이 크게 달라지므로 접촉조건을 조절함으로써 악기의 음색을 바꿀 수 있음을 설명해 준다.

높은 곡률 각을 가지는 도관 내부의 줄 꼬임 구동에 대한 진동 효과 (Effect of Vibration on Twisted String Actuation Inside Conduit at High Curvature Angles)

  • 이동휘;이고르 가포노브;유지환
    • 로봇학회논문지
    • /
    • 제14권3호
    • /
    • pp.221-227
    • /
    • 2019
  • This paper studies an effect of vibration on twisted string actuation inside conduit at high curvature angles. In our previous work. we have mentioned that twisted string actuators can be used to transmit power even at significant curvature angles of the conduit. However, several undesirable effects, namely pull-back, hysteresis, and chattering, were present during actuation due to friction between strings and the internal sheath of the conduit. This paper reports the results of experimental study on effects of vibration on twisted string actuation inside curved conduits. We have demonstrated that applying vibration generated near natural frequency of the system during the stages of twisting and untwisting cycles helped reduce pull-back and hysteresis and increase string contraction. In case when sheath was deflected by $180^{\circ}$ under a constant load of 3 kg, we were able to achieve over 40% decrease in pull-back and 30% decrease in hysteresis, compared with no vibration case.

축방향으로 주행하는 현의 횡진동 제어 (Transverse Vibration Control of an Axially Moving String)

  • 류두현;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.579-584
    • /
    • 2000
  • In this study. the time varying boundary control using the right boundary transverse motion on the basis of the energy flux between the moving string and the boundaries is suggested to stabilize the transverse vibration of an axially moving string. The effectiveness of the active boundary control is showed through experimental results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. For the unmoving and moving string at various velocity under various tension the performance of the transverse vibration control using the time varying right boundary control with the suggested control scheme is experimentally demonstrated.

  • PDF

속도경계제어를 이용한 축방향 주행 현의 횡진동 제어 (Transverse Vibration Control of an Axially Moving String by Velocity Boundary Control)

  • 류두현;박영필
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.135-144
    • /
    • 2001
  • In this study, the time varying boundary control using the right boundary transverse motion is suggested to stabilize the transverse vibration of an axially moving string on the basis of the energy flux between the moving string and the boundaries. The effectiveness of the active velocity boundary control is showed through the FDM simulation results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. Optical sensor system for measuring the transverse vibration of an axially moving string is developed, and the angle of the incident wave to the right boundary, which is the input of the velocity boundary controller, is obtained. Experimental research is carried out to examine the validity and the performance of the transverse vibration control using the suggested velocity right boundary control scheme.

축방향으로 이동하며 길이가 변하는 연속체의 진동특성: 스파게티 문제에 응용 (Vibration Characteristics of the Axially Moving Continuum with Time-Varying Length: Spagetti Problem)

  • 사재천;이승엽;이민형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.385-392
    • /
    • 2001
  • Time-dependent frequency and energy of free vibration of the Spagetti problem, that is the axially moving continuum with time-varying length, are investigated. Exact expressions for the natural frequency and time-varying vibration energy are derived by dealing with traveling waves. When the string length is increased, the vibration period increases, but the free vibration energy varies as a function of both translating velocity and boundary velocity of the continuum. However, when the string undergoes retraction, the vibration energy increases with time, String tension together with non-zero instantaneous velocity at the moving boundary results in energy variation.

  • PDF

Nonlinear self-induced vibration and operability envelope analysis of production strings in marine natural gas development

  • Liu, Kang;Chen, Guoming;Zhu, Gaogeng;Zhu, Jingyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.344-352
    • /
    • 2019
  • Marine production strings are continuously affected by unstable internal fluid during operation. In this paper, the structural governing equation for marine production string self-induced vibration is constructed. A finite element analysis model is established based on Euler-Bernoulli theory and solved by the Newmark method. Furthermore, based on reliability theory, a self-design procedure is developed to determine the operability envelope for marine production string self-induced vibration. Case studies show: the response frequency of the production strings is consistent with the excitation frequency under harmonic fluctuation and mainly determined by the first-order natural frequency under stochastic fluctuation. The operability envelope for marine production string self-induced vibration is a near symmetrical trapezium. With the increasing of natural gas output, the permissible fluctuation coefficient dramatically decreases. A reasonable centralizer spacing, increasing top tension, and controlling natural gas output are of great significance to the risk control in marine production string operation.

축방향으로 이동하는 현의 경계제어 (Boundary Control of Container Cranes as an Axially Moving String System)

  • 박한;홍금식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.387-392
    • /
    • 2004
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle for systems with changing mass. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

종방향과 횡방향 변위가 연성된 축방향으로 움직이는 현의 진동 (Vibration of an Axially Moving String Coupled between Longitudinal and Transverse Deflections)

  • 정진태;신창호;한창수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.731-736
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are investigated by using the generalized-${\alpha}$ method.

  • PDF

축방향 이송속도를 갖는 현의 모델링 및 진동해석 (Dynamic Modeling and Analysis for an Axially moving String)

  • 신창호;정진태;한창수
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.838-842
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, the equations of motion are derived considering the longitudinal and transverse deflection. The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. These equations are discretized by using the Galerkin approximation after they are transformed into the variational equations, i.e. the weak forms so that the admissible and comparison functions can be used for the bases of the longitudinal and transverse deflections respectively. With the discretized nonlinear equations, the time responses are investigated by using the generalized-$\alpha$ method.

  • PDF