• Title/Summary/Keyword: String Vibration

Search Result 61, Processing Time 0.027 seconds

Free Vibration Characteristics of a String with Time-Varying Length (길이가 변하는 현의 자유진동 특성)

  • 이승엽;박상규
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.906-913
    • /
    • 1999
  • Time-dependent period and energy of free vibration of a string, whose length varies with time at a constant rate, are investigated by a traveling wave method. When the string length is increased, the vibration period increase, but the free vibration energy decrease with time. However, when the string undergoes retraction, the vibration energy increases with time. String tension together with non-zero instantaneous velocity at the moving boundary results in energy variation. Analytical solutions by the traveling wave method are compared with previous results using the perturbation method and Kotera's approach.

  • PDF

Analysis of String Vibraion in Cello (첼로 현의 진동분석)

  • Choi, Gi-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.395-402
    • /
    • 2008
  • In viol family string instruments vibration of string is transmitted to the front plate through bridge to cause resonance of the instrument body. Therefore, the vibration of string is the source of sound and the properties, the structure, and the boundary conditions of string are expected to have significant effect on the sound. In this study the vibration of strings in cello when one end is fixed and the other end is pressed with finger tip is studied and compared with the case of the fixed-fixed ends. The result of analysis and experiment shows that the vibration of the string that is fixed at one end and pressed with finger tip at the other end is significantly influenced by the contact condition of the string with the finger tip and also quite different from that of the fixed-fixed string, It also suggests that the sound of a cello can be significantly influenced by the contact condition between the string and the finger tip in the fingered string.

Effect of Vibration on Twisted String Actuation Inside Conduit at High Curvature Angles (높은 곡률 각을 가지는 도관 내부의 줄 꼬임 구동에 대한 진동 효과)

  • Lee, Donghyee;Gaponov, Igor;Ryu, Jee-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • This paper studies an effect of vibration on twisted string actuation inside conduit at high curvature angles. In our previous work. we have mentioned that twisted string actuators can be used to transmit power even at significant curvature angles of the conduit. However, several undesirable effects, namely pull-back, hysteresis, and chattering, were present during actuation due to friction between strings and the internal sheath of the conduit. This paper reports the results of experimental study on effects of vibration on twisted string actuation inside curved conduits. We have demonstrated that applying vibration generated near natural frequency of the system during the stages of twisting and untwisting cycles helped reduce pull-back and hysteresis and increase string contraction. In case when sheath was deflected by $180^{\circ}$ under a constant load of 3 kg, we were able to achieve over 40% decrease in pull-back and 30% decrease in hysteresis, compared with no vibration case.

Transverse Vibration Control of an Axially Moving String (축방향으로 주행하는 현의 횡진동 제어)

  • Ryu, Doo-Hyun;Park, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.579-584
    • /
    • 2000
  • In this study. the time varying boundary control using the right boundary transverse motion on the basis of the energy flux between the moving string and the boundaries is suggested to stabilize the transverse vibration of an axially moving string. The effectiveness of the active boundary control is showed through experimental results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. For the unmoving and moving string at various velocity under various tension the performance of the transverse vibration control using the time varying right boundary control with the suggested control scheme is experimentally demonstrated.

  • PDF

Transverse Vibration Control of an Axially Moving String by Velocity Boundary Control (속도경계제어를 이용한 축방향 주행 현의 횡진동 제어)

  • Ryu, Du-Hyeon;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.135-144
    • /
    • 2001
  • In this study, the time varying boundary control using the right boundary transverse motion is suggested to stabilize the transverse vibration of an axially moving string on the basis of the energy flux between the moving string and the boundaries. The effectiveness of the active velocity boundary control is showed through the FDM simulation results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. Optical sensor system for measuring the transverse vibration of an axially moving string is developed, and the angle of the incident wave to the right boundary, which is the input of the velocity boundary controller, is obtained. Experimental research is carried out to examine the validity and the performance of the transverse vibration control using the suggested velocity right boundary control scheme.

Vibration Characteristics of the Axially Moving Continuum with Time-Varying Length: Spagetti Problem (축방향으로 이동하며 길이가 변하는 연속체의 진동특성: 스파게티 문제에 응용)

  • 사재천;이승엽;이민형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.385-392
    • /
    • 2001
  • Time-dependent frequency and energy of free vibration of the Spagetti problem, that is the axially moving continuum with time-varying length, are investigated. Exact expressions for the natural frequency and time-varying vibration energy are derived by dealing with traveling waves. When the string length is increased, the vibration period increases, but the free vibration energy varies as a function of both translating velocity and boundary velocity of the continuum. However, when the string undergoes retraction, the vibration energy increases with time, String tension together with non-zero instantaneous velocity at the moving boundary results in energy variation.

  • PDF

Nonlinear self-induced vibration and operability envelope analysis of production strings in marine natural gas development

  • Liu, Kang;Chen, Guoming;Zhu, Gaogeng;Zhu, Jingyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.344-352
    • /
    • 2019
  • Marine production strings are continuously affected by unstable internal fluid during operation. In this paper, the structural governing equation for marine production string self-induced vibration is constructed. A finite element analysis model is established based on Euler-Bernoulli theory and solved by the Newmark method. Furthermore, based on reliability theory, a self-design procedure is developed to determine the operability envelope for marine production string self-induced vibration. Case studies show: the response frequency of the production strings is consistent with the excitation frequency under harmonic fluctuation and mainly determined by the first-order natural frequency under stochastic fluctuation. The operability envelope for marine production string self-induced vibration is a near symmetrical trapezium. With the increasing of natural gas output, the permissible fluctuation coefficient dramatically decreases. A reasonable centralizer spacing, increasing top tension, and controlling natural gas output are of great significance to the risk control in marine production string operation.

Boundary Control of Container Cranes as an Axially Moving String System (축방향으로 이동하는 현의 경계제어)

  • Park, Hahn;Hong, Keum-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.387-392
    • /
    • 2004
  • The control objectives in this paper are to move the gantry of a container crane to its target position and to suppress the transverse vibration of the payload. The crane system is modeled as an axially moving string equation, in which control inputs are applied at both ends, through the gantry and the payload. The dynamics of the moving string are derived using Hamilton's principle for systems with changing mass. The Lyapunov function method is used in deriving a boundary control law, in which the Lyapunov function candidate is introduced from the total mechanical energy of the system. The performance of the proposed control law is compared with other two control algorithms available in the literature. Experimental results are given.

  • PDF

Vibration of an Axially Moving String Coupled between Longitudinal and Transverse Deflections (종방향과 횡방향 변위가 연성된 축방향으로 움직이는 현의 진동)

  • Chung, J.T.;Shin, C.H.;Han, C.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.731-736
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are investigated by using the generalized-${\alpha}$ method.

  • PDF

Dynamic Modeling and Analysis for an Axially moving String (축방향 이송속도를 갖는 현의 모델링 및 진동해석)

  • 신창호;정진태;한창수
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.838-842
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, the equations of motion are derived considering the longitudinal and transverse deflection. The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. These equations are discretized by using the Galerkin approximation after they are transformed into the variational equations, i.e. the weak forms so that the admissible and comparison functions can be used for the bases of the longitudinal and transverse deflections respectively. With the discretized nonlinear equations, the time responses are investigated by using the generalized-$\alpha$ method.

  • PDF