• Title/Summary/Keyword: Strike

Search Result 740, Processing Time 0.022 seconds

Comments on Seismicity and Crustal Structure of the Korean Peninsula (한반도의 지진활동과 지각구조)

  • Lee, Kie-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.256-267
    • /
    • 2010
  • Earthquakes in the Korean Peninsula occur along the faults formed and boundaries between major geological units ruptured due to violent tectonic activities during the Mesozoic. E-W and/or ENE-SSW compressive stress regime resulting from collisions between the Eurasian plate and neighbouring the Indian plate, the Pacific plate and the Philippine plate trigger Korean earthquakes of thrust faulting with predominant strike-slip components along the mostly NNE-SSW trending active faults. Seismicity of the Korean peninsula has been moderate to low during the past 20 centuries except for the period from the 15th to the 18th centuries of exceptionally high seismicity, showing the typical irregularity of intraplate seismicity. The structure of the Korean peninsula is rather homogeneous without the Conrad discontinuity sharply dividing the upper and lower crust. Lateral heterogeneities exist in the crust. The crust with an average thickness of about 33 km is thicker in the mountainous region than the plain due to the Airy-type isostatic equilibrium maintained in the peninsula. Crustal P-wave velocity with average of about 6.3 km/sec increases gradually from the near surface to the Moho. The upper mantle P-wave (Pn) velocity is about 7.8 km/sec.

Source Parameters of Two Moderate Earthquakes at the Yellow Sea Area in the Korean Peninsula on March 22 and 30, 2003 (한반도 황해 해역에서 발생한 2003년 3월 23일, 3월 30일 중규모 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.235-242
    • /
    • 2010
  • Two moderate earthquakes with local magnitude 4.9 and 5.0 at the Yellow Sea area occurred successively around Hong island on March 22, 2003 and Baengnyeong island on March 30, 2003, respectively, close to the Korean Peninsula. Focal mechanisms by the waveform inversion analysis are strike slip faulting with a thrust component for the March 22 event, and normal faulting for the March 30 event. The direction of P-axes of two events were ENE-WSW which were similar to previous studies on that of P-axes in and around the Korean Peninsula. Moment magnitudes determined by the waveform inversion analysis were 4.7 and 4.5, respectively, whereas those determined by spectral analysis were 4.8 and 4.6, respectively. As regards the March 22 event, regional stress by combined tectonic forces from compressions of plates colliding to the Eurasian plate, rather than mere local stress, was indicated. However, it was estimated that the March 30 event took place when the weak zone generated from the existing collision zone was reactivated when subjected to local stress in the tensile direction. This seismological observation indirectly supports the idea that the collision zone may extend to the Korean Peninsula.

Tertiary Dyke Swarms and their Tectonic Importance in the Southeastern Part of the Korean Peninsula (한반도 남동부 제3기 암맥군과 지구조적 중요성)

  • Kim, Jin-Seop;Son, Moon;Kim, Jong-Sun;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.169-181
    • /
    • 2002
  • Basic~intermediate dike swarms are pervasively developed in the east of the Ulsan Fault, SE Korea. Most of them intruded initially along the NS-trending extensional fractures which developed under EW extension during the East Sea opening in the Early Miocene (before about 17 Ma). The mean-strikes of the basic dikes intruding into the granites are more clockwise rotated in farther eastern side, i. e.$ N06^{\circ}$E, $Nl5^{\circ}$E, and $N37^{\circ}$E in the western side, in the just vicinities, and in the eastern side of the YBonil Tectonic Line (YTL), respectively. And the mean-strike of the basic dikes nearby shoreline is also most clockwise rotated ($N75^{\circ}$E in the Guryongpo Peninsula). The spatial variance indicates that the dikes, located only in the east of the YTL, experienced horizontal-clockwise rotation, and that the dikes in farther east from the YTL experienced more clockwise rotation. It is, thus, supported that the NNW dextral shear stress, generated by the spreading of the East Sea, was propagated toward inland from eastern continental margin of the Korean Peninsula, and that the YTL is an westernmost limit of the clockwise crustal rotations which are pervasively observed in the vicinities of the Miocene basins, SE Korea.

The Changes in the Future War Patterns and ROK's Response (미래 전쟁양상의 변화와 한국의 대응)

  • Kim, Kang-nyeong
    • Korea and Global Affairs
    • /
    • v.1 no.1
    • /
    • pp.115-152
    • /
    • 2017
  • This paper is to analyse the changes in the future war patterns and ROK's response. To this end the paper is composed of 5 chapters titled instruction; concept, characteristics, types, and evolution of war; changes in the war patterns of the future; Korea's response strategies for the future war. Truth can be immutable, but everything else changes. War has begun with human history, and today there are still wars in places all over the world. As ages change from agricultural society to industrial society to knowledge and information society, aspects(patterns) of war have also changed. Future warfare includes the 5th dimensional war(in the ground, the sea, the air, the universe, the cyber), the network-centric, the precision strike, the rapid maneuver, the non-gunpowder, the non-lethal, the unmanned robot, the informational & cyber, the asymmetric, the non-linear, and the parallel etc. In response to these changes in the pattern of wars, the ROK military should seek (1)to build a future-oriented military force, (2)to continuously develop military innovation and preparedness, and (3)to develop and establish a paradigm for acquiring the power of technology. A Roman strategist, Vegetius said, "If you wish peace, prepare for war." This is a universally accepted maxim in international society today. We must never forget that peace we desire is given when we have the will and ability to keep.

Case Study on Groß Schönebeck EGS Project Research in Germany (독일 그로스 쉐네벡 EGS 실증 프로젝트 연구사례)

  • Min, Ki-Bok;Park, Sehyeok;Zimmermann, Gunter
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.320-331
    • /
    • 2015
  • This paper presents a case study of an enhanced geothermal system(EGS) demonstration project conducted in $Gro{\ss}$ $Sch{\ddot{o}}nebeck$, Northerm Germany, focusing on hydraulic stimulation. The project was conducted with doublet system in sandstone and volcanic formations at 4 - 4.4 km depth. Under normal faulting to strike-slip faulting stress regime, hydraulic stimulations were conducted at injection and production wells by massive waterfrac and gel-proppant fracturing. Injectivity index increased from $0.97m^3/(hr^*MPa)$ to $7.5m^3/(hr^*MPa)$ and productivity index increased from $2.4m^3/(hr^*MPa)$ to $10.1m^3/(hr^*MPa)$ by a series of hydraulic stimulations at both wells. After circulation tests through injection and production wells, however, productivity index decreased from $8.9m^3/(hr^*MPa)$ to $0.6m^3/(hr^*MPa)$ in two years. Slip tendency analysis for the stimulation in volcanic layer estimated the required pressure for shear slip and its preferred orientations and it showed reasonable match with actual stimulation results. Through the microseismicity observation for the stimulation of volcanic formation, only 80 seismic events with its moment magnitudes in -1.8<$M_W$<-1.0 were observed, which are unexpectedly low for EGS hydraulic stimulation.

Preliminary Report for KD Subsurface Oil Storage (원유 비축시설 건설을 위한 예비조사)

  • Han, Jeong Sang;Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.185-192
    • /
    • 1980
  • The rocks exposed in the investigation area are andesite of Late Cretaceous age, and syenite and aplitic granite of Bulgugsa Series of Early Cretaceous Period, which is intruded in the older andesitic rock. The strike and dip of major joint is $N10^{\circ}$ to $60^{\circ}E$, and $70^{\circ}SE$ to vertical respectively. According to seismic exploration, lower velocity zone, deemed to be fractured and/or crushed zone, is appeared along the gully center of east flank of the area. Test drilling shows that andesite bedrock is mostly very hard, massive, and very fine to medium grained and has almost 100 percent RQD and core recovery. In comparision with andesitic bedrock, intruded syenite cores show that it is highly crush especially at the depth from 55m to 63m.

  • PDF

Tin, Tungsten Mineralization in Bonghwa-Uljin Area (봉화(奉化)-울진지역(蔚珍地域)의 석(錫), 중석광화작용(重石鑛化作用))

  • Park, Hee-In;Lee, Sang Man
    • Economic and Environmental Geology
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1984
  • The tin and tungsten deposits are embedded around the age unknown Buncheon granite gneiss which intruded the Precambrian schists, gneiss and amphibolites in Bonghwa-Uljin area. Pegmatite dike swarm developed intermittently about 4km along the southern border of Buncheon granite gneiss at Wangpiri area. Thickness of pegmatite dikes range from 0.5 to 15m. Pegmetite is consisted of quartz, microcline, albite, muscovite and frequently topaz, tourmaline, garnet, fluorite, fluorapatite and lepidolite. Pegmatite dikes are greisenized, albitized and microclinized along dike walls. Cassiterites are irregularly disseminated through the intensely greienized and albitized parts of the pegmatite. Cassiterite crystals are mainly black to dark brown and contain considerable Ta and Nb. Average Ta and Nb contents of the four cassiterite samples are 5300 and 3400 ppm. The Ssangjeon tungsten deposits is embedded within the pegmatite dike developed along the northern contact of Buncheon granite gneiss with amphibolite. This pegmatite developed 2km along the strike and thickness varies from 10 to 40m. Mineral constituents of the pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. Ore minerals are ferberite and scheelite with minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, marcasite, and fluorite. Color and occurrence of quartz reveals that quartz formed at three different stages; quartz I, the earliest milky white quartz formed as a rock forming mineral of simple pegmatite; quartz II, gray to dark gray quartz which replace the minerals associated with quartz I; quartz III, the latest white translucent quartz which replace the quartz I and H. All of the ore minerals are precipitated during the quartz II stage. Fluid inclusion in quartz I and II are mainly gaseous inclusions and liquid inclusions are contained in quartz III and fluorite. Salinities of the inclusion in quartz I and II ranges from 4.5 to 9.5 wt. % and 5.1 to 6.0 wi. % equivalent NaCl respectively. Salinities of the inclusion in fluorite range from 3.5 to 8.3 wt. % equivalent NaCl. Homogenization temperatures of the inclusion in quartz I, II and III range from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and 278 to $357^{\circ}C$. Data gathered in this study reveals that tin and tungsten mineralization in this area are one of prolonged event after the pegmatite formation around Buncheon granite gneiss.

  • PDF

Geologic Structure of the Anatolian Peninsula: Tectonic Growth of Collisional Continental Margins (아나톨리아 반도의 지질구조: 대륙 충돌에 따른 구조적 성장)

  • Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.465-476
    • /
    • 2012
  • The Anatolia peninsula consists of several continental fragments that include the Pontide Block in north and the Anatolide-Touride Block in south as well as the Arabian Platform in southeast. These continental blocks were joined together into a single landmass in the late Tertiary. During most of the Phanerozoic these continental blocks were separated by paleo-oceans, such as Paleo-Tethys and Neo-Tethys. The Pontide Block in north show Laurasian affinities, and was only slightly affected by the Alpide orogeny; they preserve evidence for the Variscan and Cimmeride orogenies. The Pontic Block is composed of the Strandja, Istanbul and Sakarya zones that were amalgamated into a single terrane by the mid Cretaceous times. The Anatolide-Tauride Block in south shows Gondwana affinities but was separated from Gondwana in the Triassic and formed an extensive carbonate platform during the Mesozoic. The Anatolide-Tauride Block was intensely deformed and partly metamorphosed during the Alpide orogeny; this leads to the subdivision of the Anatolide-Tauride Block into several zones on the basis of the type and age of metamorphism and deformation. The Arabian Platform in southeast forms the northernmost extension of the Arabian Plate that shows a stratigraphy similar to the Anatolide-Tauride Block with a clastic-carbonate dominated Palaeozoic and a carbonate dominated Mesozoic succession. A new tectonic era started in Anatolia Peninsula in the Oligocene-Miocene after the final amalgamation of these continental blocks and plate. This neotectonic phase is characterized by extension, and strike-slip faulting, continental sedimentation, and widespread calcalkaline magmatism, which played a very important role in producing beautiful landscapes of the Anatolia Peninsula today.

Numerical simulation of the change in groundwater level due to construction of the Giheung Tunnel (기흥터널 건설에 따른 지하수 변화 수치모델링)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Ki-Seok;Kim, Nam-Hoon;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2010
  • We performed numerical simulations of the excavation of an underground structure (the Giheung Tunnel) in order to evaluate the rate of groundwater flow into the structure and to estimate the groundwater level around the structure. The tunnel was constructed in Precambrian bedrock in Gyeonggi Province, South Korea. Geological and electrical resistivity data, as well as hydraulic test data, were used for the numerical modeling. The modeling took into account the strike-slip faults that cross the southern part of Giheung Tunnel, as these structures influence the discharge of groundwater into the tunnel. The transient modeling estimated a groundwater flow rate into the tunnel of $306\;m^3$/day, with a grout efficiency of 40%, yielding good agreement between the calculated change in groundwater level (6.20 m) and that observed (6.30 m) due to tunnel excavation.

Survey of the Geology and Geological Structure of the Foundations at a Construction Site for Tram (경전철 건설구간의 지질 및 지질구조특성에 관한 지반조사)

  • Lee, Byung-Joo;SunWoo, Chun;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2010
  • The foundation area for tram contains biotite gneiss, quartzo-feldspathic gneiss, calc-silicate rock, and porphyroblastic gneiss of the pre-Cambrian Kyeonggi gneiss complex. These rocks record at least three stages of deformation, as indicated by fold sets of contrasting orientations (D1-D3). Joints are generally steeply dipping and strike NW-SE to WNW-ESE. The Gonjiam Fault, which strikes WNW-ESE, follows a river in the area. The fault possesses a 3-m-wide fracture zone, a 10-m-wide damage zone, and is 15 km long. Two tunnels have been constructed through the biotite gneiss. The geometric relationship between discontinuities (e.g., joints and foliation) and tunneling direction reveals that set 3 of the AA tunnel is unstable but that BB tunnel is relatively safe.