• Title/Summary/Keyword: Stretch-Flangeability

Search Result 12, Processing Time 0.018 seconds

Study on Influence of Process Parameter on Stretch Flangeability of Steel Sheet (판재 신장플랜지성에 미치는 전단 공정 인자의 영향 연구)

  • S.S. Han;H.Y. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.61-66
    • /
    • 2023
  • The quality of the sheared surface affects the stretch flangeability of steel sheet. The quality of sheared surface is influenced by several process factors such as die clearance, shape of cutting edge, use of counter punch, and shear. In this paper, the influence of these shearing process factors on the stretch flangeability of the HSS (DP980) was analyzed through a shearing and a stretch flangeability test. When the die clearance was 10%, the effect of these shearing process factors on the stretch flangeability was the greatest, and the use of an acute angle blade was found to be more advantageous in the stretch flangeability than a right angle blade. It was found that the stretch flangeability was improved when active bending was applied during shearing.

Study on Stretch Flangeability Test Method with Straight Shear Line Specimen (직선 전단 시편을 이용한 신장 플랜지성 평가법 연구)

  • Han, S.S.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • Although the hole expansion test is currently the most commonly used method to evaluate the stretch flangeability of HSS, it has been criticized due to its poor repeatability and reproducibility for test results. This paper focuses on the development of a new measurement method to investigate the stretch flangeability of HSS. Two materials (DP590, DP980) were investigated with a hole expansion test and a developed test method. Test results showed that the developed test method could be used as one stretch flangeability test to help identify relevant parameters of the shearing process to avoid edge cracking.

Non-linear Correlation Between Hole Edge Condition and Hole Expansion Ratio (구멍 파단면 상태와 구멍확장률 간의 비선형 상관관계 분석)

  • Jeong, B.S.;Cho, W.;Park, S.;Jung, J.;Na, H.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.74-82
    • /
    • 2021
  • Stretch-flangeability, which is the ability of sheet steels to be deformed into complex shapes, is a critical formability property in automobile body parts. In this study, the center-hole for hole expansion test, which is normally used to evaluate the stretch-flangeability of sheet steels, was prepared by both punching and electrical discharge machining (EDM) methods. Hole expansion ratio (HER) of punched hole was far lower than the HER of EDM drilled hole because of damage/crack in hole-edge due to punching process. The effect of hole-edge condition on HER was quantified by mechanical, fractographic and geometric factors. Based on these factors, the empirical equation used to determine HER for various sheet steels was derived using non-linear regression.

Microstructure and Mechanical Properties of High Strength and Stretch-Flangeability Hot-Rolled Steels (고강도-신장플랜지성 열연강의 미세조직 및 기계적 성질)

  • Chun, Eun-Joon;Lee, Ju-Seung;Do, Hyeong-Hyeop;Kim, Seong-Ju;Park, Yong-Ho;Kang, Nam-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • Research into the development of high strength (1 GPa) and superior formability, such as total elongation (10%), and stretch-flangeability (50%) in hot-rolled steel was conducted with a thermomechanically controlled hot-rolling process. To improve the overall mechanical properties simultaneously, low-carbon steel using precipitation hardening of Ti-Nb-V multimicroalloying elements was employed. And, ideal microstructural characteristics for the realization of balanced mechanical properties were determined using SEM, EBSD, and TEM analyses. The developed steel, 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V), consisted of ferrite as the matrix phase and second phase of granular bainite with fine carbides (20-50 nm) in both phases. The significant factor of the microstructural characteristics that affect stretch-flangeability was found to be the microstructural homogeneity. The microstructural homogeneity, manifest in such characteristics as low localization of plastic strain and internally stored energy, was identified by grain average misorientation method, analyzed by electron backscattered diffraction (EBSD) and hardness deviation between the phases. In summar, a hot-rolled steel having a composition 0.06C-2.0Mn-0.5Cr-0.2(Ti + Nb + V) demonstrated a tensile strength of 998 MPa, a total elongation of 19%, and a hole expansion ratio of 65%. The most important factors to satisfy the mechanical property were the presence of fine carbides and the microstructural homogeneity, which provided low hardness deviation between the phases.

Stretch-Flangeability of Harmonic Structure Material Manufactured by Powder Metallurgy Method (분말야금법으로 제조한 하모닉 구조재료의 신장플랜지 가공성)

  • Yoon, Jae Ik;Lee, Hak Hyeon;Park, Hyung Keun;Ameyama, Kei;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.128-132
    • /
    • 2017
  • Harmonic structure materials are materials with a core-shell structure having a shell with a small grain size and a core with a relatively large grain size. They are in the spotlight because their mechanical properties reportedly feature strength similar to that of a sintered powder with a fine grain size and elongation similar to that of a sintered powder with a coarse grain size at the same time. In this study, the tensile properties, microstructure, and stretch-flangeability of harmonic structure SUS304L made using powder metallurgy are investigated to check its suitability for automotive applications. The harmonic powders are made by mechanical milling and sintered using a spark plasma sintering method at 1173 K and a pressure of 50 MPa in a cylindrical die. The sintered powders of SUS304L having harmonic structure (harmonic SUS304L) exhibit excellent tensile properties compared with sintered powders of SUS304L having homogeneous microstructure. In addition, the harmonic SUS304L has excellent stretch-flangeability compared with commercial advanced high-strength steels (AHSSs) at a similar strength grade. Thus, the harmonic SUS304L is more suitable for automotive applications than conventional AHSSs because it exhibits both excellent tensile properties and stretch-flangeability.

Effects of Coiling Temperature and Carbides Behavior on Stretch-flangeability for 980MPa Hot-rolled Steels (980 MPa급 열연강의 권취온도와 탄화물 거동에 따른 신장플랜지성)

  • Chun, Eun-Joon;Lee, Ju-Seung;Do, Hyeonghyeop;Kim, Seong-Ju;Choi, Yoon-Suk;Park, Yong-Ho;Kang, Namhyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.487-493
    • /
    • 2012
  • To analyze the factors on stretch-flangeability for 980 MPa-grade hot-rolled steels, two types of steels (Fe-Cr and Fe-Mo) were manufactured by hot-rolling. Manufactured steels at the low coiling temperature, such as 400 and $500^{\circ}C$, had poor stretch-flangeability due to un-uniformly distributed carbides and a large deviation of interphase hardness. However, when the coiling temperature was set at $650^{\circ}C$ with Fe-Cr steel, 998 MPa of ultimate tensile strength, 19% of total elongation and 65% of the hole expanding ratio were achieved by microstructural constituents of polygonal ferrite (PF) and granular ferrite (GF) dispersed with fine carbides (<50 nm). Therefore, the material to attain 980 MPa with superior formability was the Fe-Cr steel that was precipitation-hardened in polygonal ferrite and granular ferrite at the coiling temperature $650^{\circ}C$.

Effect of Coiling Temperature and Alloying Elements on the Mechanical Properties and Precipitation Behavior in High Strength Hot Rolled Steel Sheets (고강도 열연강판의 기계적 성질과 석출거동에 미치는 권취온도와 합금원소의 영향)

  • Kang, S.S.;Lee, O.Y.;Han, S.H.;Jin, K.G.;Seong, B.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.683-690
    • /
    • 2003
  • The high strength low alloy(HSLA) steels microalloyed with Nb, Ti and V have been widely used as the automobile parts to decrease weight of vehicles. The effects of process conditions are investigated in the aspects of the precipitation behavior and the mechanical properties of HSLA steel microalloyed with Nb and Ti using TEM, SANS and mechanical testing. When Ti was added to a 0.07C-1.7Mn steel which was coiled at $500^{\circ}C$, the specimen revealed the property of higher tensile strength of 853.1 MPa and the stretch-flangeability of 60%. The stretch-flangeability was increased up to 97.8% for coiling temperature above $700^{\circ}C$. The precipitation hardening cannot be achieved in the 0.045C-1.65Mn steel which was the lower density of fine precipitates. However, the 0.07C-1.7Mn steels containing Nb and/or Ti which was coiled at X$/^{\circ}C$ have a high precipitates density of $2${\times}$10^{ 5}$/$\mu$㎥. The high strength of these steels was attributed to the precipitation hardening caused by a large volume froction of (Ti, Nb)C precipitates with a size below 5 nm in ferrite matrix.

A Study on the Stretch-flangeability of Hot-Rolled High Strength Steel with Ferrite-Bainite Duplex Microstructure (페라이트-베이나이트 복합조직 고강도 열연강판의 신장플랜지 특성에 관한 연구)

  • Cho, Yeol-Rae;Chung, Jin-Hwan;Koo, Hwang-Hoe;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1252-1262
    • /
    • 1999
  • The effect of microstructures on the strength-flangeability of Nb bearing hot-rolled high strength steel was investigated in order to improve the strength-flangeability of conventional TS 580MPa grades HSLA steel for the automotive wheel disc. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling was effective to produce the Nb-bearing high strength steel with the polygonal ferrite and bainite duplex microstructures. It was suggested that the suppressed precipitation of grain boundary cementites and the decreased hardness difference between ferrite matrix and bainite cause the excellent stretch-flangeability of ferrite-bainite duplex microstructure steel. Therefore, the formation and propagation of microcracks were suppressed relative to the conventional HSLA steel with ferrite and pearlite microstructure. In addition, the elongation was improved as compared with that of hot-rolled steel sheets using conventional early cooling pattern because the volume fraction of polygonal ferrite was increased.

  • PDF

The Characteristics of Microstructure and the Mechanical Properties of Multi-Phase Sheet Steel. (다상조직강의 기계적 성질과 조직특성)

  • Park, Jong-Hyeon;Gang, Gye-Myeong;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.115-124
    • /
    • 1991
  • In this study, the relationship between mechanical properties and the effects of second phase in tri-phase steel which was composed of ferrite-martensite-bainite was investigated. In order to obtain different microstructure of ferrite+martensite(DP), ferrite+bainite(F+B), and ferrite+martensite+bainite(TP, different heat treatment has been accomplished. The effects of volume fraction and microstructure of each specimen were studied on tensile property, Charpy impact energy and stretch-flangeability. As the bainite content in triphase steels increased, the tensile strength, and yield strength decreased as well as the reduction of area and strength-uniform elongation increased. However, ferrite-bainite steel had high yield ratio and yield point elongation. The Charpy impact energy of TP and F+B steel was higher than that of DP steel. In addition, the characteristics of hole expanding limit($\lambda$) of TP steel and F+B steel were higher than that of DP steel. These mechanical properties of tri-phase steel have been improved, because bainite could be deformed easily within ferrite matrix. The effect of bainite on ductility in tri-phase steel has been found to be favorable. In this experiment, tri-phase steel contained within 27% bainite volume fraction had good nechanical properties and superior stretch-flangeability.

  • PDF

Effect of Tempering on Stretch-Flangeability of 980 MPa Grade Dual-Phase Steel (980 MPa급 이상조직강의 신장 플랜지성에 미치는 템퍼링의 영향)

  • Lee, Gun-Hee;Baek, Jong-Hee;Song, Eunji;Na, Seon-Hyeong;Park, Bongjune;Kim, Ju-Young;Kwon, Yongjai;Shin, Sang Yong;Lee, Jung Gu
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.292-300
    • /
    • 2020
  • In this study, the effect of tempering on the stretch-flangeability is investigated in 980 MPa grade dual-phase steel consisting of ferrite and martensite phases. During tempering at 300 ℃, the strength of ferrite increases due to the pinning of dislocations by carbon atoms released from martensite, while martensite is softened as a consequence of a reduction in its carbon super-saturation. This strength variation results in a considerable increase in yield strength of the steel, without loss of tensile strength. The hole expansion test shows that steel tempered for 20 min (T20 steel) exhibits a higher hole expansion ratio than that of steel without tempering (T0 steel). In T0 steel, severe plastic localization in ferrite causes easy pore formation at the ferrite-martensite interface and subsequent brittle crack propagation through the highly deformed ferrite area during hole expansion testing; this propagation is mainly attributed to the large difference in hardness between ferrite and martensite. When the difference in hardness is not so large (T20 steel), on the other hand, tempered martensite can be considerably deformed together with ferrite, thereby delaying pore formation and hindering crack propagation by crack blunting. Eventually, these different deformation and fracture behaviors contribute to the superior stretch-flangeability of T20 steel.