• Title/Summary/Keyword: Stress-strain characteristics

Search Result 934, Processing Time 0.033 seconds

Effect of Geometrical Discontinuity on Ductile Fracture Initiation Behavior under Static Leading

  • An, G.B.;Ohata, M.;Toyoda, M.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • It is important to evaluate the fracture initiation behaviors of steel structure. It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of notch radius, which can elevate plastic constraint due to heterogeneous plastic straining on critical condition to initiate ductile crack using two-parameters. Hense, the crack initiation testing were conducted under static loading using round bar specimens with circumferential notch. To evaluate the stress/strain state in the specimens was used thermal elastic-plastic FE-analysis. The result showed that equivalent plastic strain to initiate ductile crack expressed as a function of stress triaxiality obtained from the homogeneous specimens with circumferential notched under static loading. And it was evaluated that by using this two-parameters criterion, the critical crack initiation of homogeneous specimens under static loading.

  • PDF

Determination of True Stress-Strain Curves of Auto-body Plastics Using FEGM (FEGM을 이용한 자동차용 플라스틱의 진응력-변형률 선도 도출)

  • Park, C.H.;Kim, J.S.;Huh, H.;Ahn, C.N.;Choi, S.J
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.223-226
    • /
    • 2009
  • The plastics are widely utilized in the inside of vehicles. The dynamic tensile characteristics of auto-body plastics are important in a prediction of deformation mode of the plastic component which undergoes the high speed deformation during car crash. This paper is concerned with the dynamic tensile characteristics of the auto-body plastics at intermediate strain rates. Quasi-static tensile tests were carried out at the strain rate ranged from 0.001/sec to 0.01/sec using the static tensile machine(Instron 5583). Dynamic tensile tests were carried out at the strain rate ranged from 0.1/sec to 100/sec using the high speed material testing machine developed. Conventional extensometry method is no longer available for plastics, since the deformation of plastic is accompanied with localized deformation. In this paper, quasi-static and dynamic tensile tests were performed using ASTM IV standard specimens with grids and images from a high speed camera were analyzed for strain measurement. True stress-strain relations and the actual strain rates at each deformation step were obtained by processing load data and deformation images, assuming the plastics to deform uniformly in each grid.

  • PDF

Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects (유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성)

  • Ha, J.S.;Koh, S.K.;Ong, J.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

Comparison of Karasek's Job Content Questionnaire and Korea Occupational Stress Scale (Karasek의 Job Content Questionnaire와 Korea Occupational Stress Scale의 비교 연구)

  • Lee, Jong-Bin;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.72-78
    • /
    • 2015
  • According to the report of the WHO, workers have been exposed to much job strain such as job load, responsibility, role, interpersonal conflict etc. In Korea, studies on job strain started to become active from 1990s and now hundreds of studies are actively under going or publishing so that the studies are contributing to development and improvement of job strain. Representative measurement models of job strain are Job Strain Model of Karasek, Job Stress Model of NOISH, Korea Occupational Stress Scale, JSQ(Job Stress Questionnaire), K-OSI(Korea Version of Occupational Stress Inventory) etc. (Lee Kwan-Suk, 2012 ; KOSHA, 2003). Among them, Job Strain Model of Karasek had been loved by many researchers of job strain before Korea Occupational Stress Scale was developed. Job Strain Model of Karasek had been fitted to Korean style and then, used to analyze job strain of Korean people so that this Scale highly contributed to seeking relationship with cardiovascular disease, musculoskeletal disease caused by job, smoking, drug, alcohol poisoning, and pulse(Lee Kwan-Suk, 2012). But as this Model was studied and developed based on foreign culture and life pattern, a model fit to Korea was developed to measure job strain for Korean people, which is Korea Occupational Stress Scale now most frequently used in measuring job strain. Accordingly, after this study made questionnaire survey about same population using the two methods used most frequently in measuring job strain, the study investigated what features appeared, what correlations appear between two models, and comparatively analyzed characteristics each independent and dependent variable. Based on this, the study aimed to exactly express job strain of Korean people. The subjects of the study were a population of 233, and Karasek's Questionnaire and KOSS's Questionnaire were surveyed at the same time. The results were analyzed by statistical program to obtain significant difference between two models. Four particular groups were divided with Job Strain Model of Karasek and the four particular groups were measured with Korea Occupational Stress Scale. And job strain come from combination of two models was measured, with which new comparative analysis method was suggested.

Showing Morphological Evolution of the Strain Response Envelope of Clay with Fourier Descriptor Analysis (퓨리에 기술자를 이용한 점성토의 변형률 응답 곡선의 형상 변이 분석)

  • Kim, Taesik;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.25-30
    • /
    • 2017
  • This paper introduces a novel method to quantify the morphological evolution of the strain response envelope. The strain response envelope is defined as an image in strain increment space corresponding to the unit stress input in stress space. Based on the shape of strain response envelopes, the deformation characteristics of soils can be described using the framework of elastic-plastic theory. Fourier descriptor analysis was used to investigate the morphological characteristics of strain response envelopes. The numerical results show that when the stress input remains in the initial yield surface the Fourier descriptors remain constant. Once the stress input crosses the initial yield surface, every descriptors deals in this study change. Numerical and experimental results of this study show that clear yielding response is only found in natural block samples. Among the Fourier descriptors, the descriptor called as asymmetry is the best for detecting the yield and is minimally sensitive to the number of input stress paths.

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

Characteristics of Stress-strain Relationship of Concrete Confined by Lateral Reinforcement (횡철근에 의해 횡구속된 콘크리트의 응력-변형률 특성)

  • Jeong, Hyeok-Chang;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.67-80
    • /
    • 2009
  • The basic concept of seismic design is to attain the ductility required in a design earthquake. This ductility can be obtained by providing sufficient lateral confinements to the plastic hinge regions of columns. The most cost-effective design might be derived by determining the proper amount of lateral confinement using a stress-strain relationship for confined concrete. Korean bridge design code requires the same amount of lateral confinement regardless of target ductility, but Japanese design code provides the stress-strain relationship of the confined concrete to determine the amount of lateral confinement accordingly. While design based on material characteristics tends to make the design process more involved, it makes it possible to achieve cost-effectiveness, which is also compatible with the concept of performance-based design. In this study, specimens with different numbers of lateral confinements have been tested to investigate the characteristics of the stress-strain relationship. Test results were evaluated, using several empirical equations to quantify the effects.

A Study on the Cutting characteristics of a plastic sheet including Friction (마찰을 고려한 플라스틱 시트의 절단특성에 관한 연구)

  • Han Joohyun;Kim Dohyun;Kim Chungkyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.245-248
    • /
    • 2004
  • The press cutter is productive equipment that practically manufactures materials such as fabrics, papers, films, leathers, rubbers etc. into the desired shapes using cutting method. Plate cutting process is one of the primary energy absorbing mechanisms in a grounding or collision event. The cutting mechanism is complicated and involves plastic flow of plate in the vicinity of the tip, friction between wedge and plate, deformation of plate. In this paper, we studied the effect of friction between cutter and plastic sheet for producing precise and superior products. The press cutter is analyzed numerically using MARC finite element program according to the variation of friction coefficients. The FEM results showed that normal stress, equivalent cauchy stress, normal total strain, equivalent total strain are good when friction coefficient is 0.0 and shear stress, shear total strain are good when friction coefficient is 0.8.

  • PDF

Proposed New Model for the Stress-Strain Relationship of Ultra High-Strength Concrete (초고강도 콘크리트의 응력-병형률 모델 제안)

  • 박훈규;이정화;윤영수;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.406-412
    • /
    • 1997
  • This paper presents the newly developed model for the stress-strain relationship of ultra high- strength concrete on the basis of the more refined statistical to analysis the various test results available in the literature to be more rigorous in accuracy and generalized scheme. Through the comprehensive analysis of the previously existing equations for each model, multiple curves equation has turned out to be most appropriate to simulate the linearly varying ascending branch and brittle type of descending one. The principal variables to model the stress-strain relationship such as the modulus of elasticity, ultimate strain and deformation characteristics due to stress softening phenomenon were extensively studied to be simplified in the function of the concrete compressive strength.

  • PDF

Importance of particle shape on stress-strain behaviour of crushed stone-sand mixtures

  • Kumara, Janaka J.;Hayano, Kimitoshi
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.455-470
    • /
    • 2016
  • In ballasted railway tracks, ballast fouling due to finer material intrusion has been identified as a challenging issue in track maintenance works. In this research, deformation characteristics of crushed stone-sand mixtures, simulating fresh and fouled ballasts were studied from laboratory and a 3-D discrete element method (DEM) triaxial compression tests. The DEM simulation was performed using a recently developed DEM approach, named, Yet Another Dynamic Engine (YADE). First, void ratio characteristics of crushed stone-sand mixtures were studied. Then, triaxial compression tests were conducted on specimens with 80 and 50% of relative densities simulating dense and loose states respectively. Initial DEM simulations were conducted using sphere particles. As stress-strain behaviour of crushed stone-sand mixtures evaluated by sphere particles were different from laboratory specimens, in next DEM simulations, the particles were modeled by a clump particle. The clump shape was selected using shape indexes of the actual particles evaluated by an image analysis. It was observed that the packing behaviour of laboratory crushed stone-sand mixtures were matched well with the DEM simulation with clump particles. The results also showed that the strength properties of crushed stone deteriorate when they are mixed by 30% or more of sand, specially under dense state. The results also showed that clump particles give closer stress-strain behaviour to laboratory specimens than sphere particles.