• Title/Summary/Keyword: Stress time history

Search Result 219, Processing Time 0.027 seconds

Stress-Strain-Strain Rate of Overconsolidated Clay Dependent on Stress and Time History (응력이력과 시간이력에 따른 과압밀점토의 응력-변형-변형률 속도)

  • 한상재;김수삼;김병일
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.143-150
    • /
    • 2003
  • This study deals with the stress-strain-strain rate behaviour of overconsolidated clay. Consolidated-drained stress path tests were performed on the stress-time dependent condition. Stress history consists of rotation angle of stress path, overconsolidation ratio, and magnitude of length of recent stress path. Time history includes loading rate of recent and current stress path. Test results show that all influence factors have an increasing strain rate with time, and the strain rate varies with the change of the rotation angle of stress path. With the increase of overconsolidation ratio and loading rate of current stress path, the strain rate also increases. For the stress history, correlation between stress-strain and strain rate is indicated but the time history is not.

The Effects of Stress and Time History on Pore Pressure Parameter of Overconsoldated clay (과압밀점토의 간극수압계수에 응력이력과 시간이력이 미치는 영향)

  • 김수삼;김병일;한상재;신현영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.286-294
    • /
    • 2002
  • This study investigated the effects of stress and time history of overconsolidated clayey soils on pore pressure parameter, A. Laboratory tests were carried out under the conditions of both varying stress and time history. The stress history is classified into (i) rotation angle of stress path, (ii) overconsolidation ratio, and (iii) magnitude of length of recent stress path. The time history is divided into (i) loading rate of recent stress path and (ii) rest time. Pore pressure parameters are different both in the magnitude and trend with the rotation angle, depending on the magnitude of overconsolidation ratio but not in a trend. In addition, the pore pressure parameters have no effects on the magnitude of length of recent stress path except the level of initially small strain, while loading rates of recent stress path have effects on it. Finally, the pore pressure parameters of overconsolidated clays increase with the existence of the rest time, until either the deviator stress exceeds 70 kPa or the strain up to 0.1%.

A Study on the Estimation of the Fatigue Life Using the Stress Generated Models in the Steel Railroad Bridges (강철도교의 응력발생모형을 이용한 피로수명 추정에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Lee, Seong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.19-29
    • /
    • 1996
  • In this paper, it is presumed that the stress time history was generated by simulation method and investigated compatibility in regard to the reappearance of stress time history. In this procedure, the identified frequency distribution of stress range of the steel railroad bridge varies with the rational values of cut off point and bar width. Thus, we show variable aspect of the equivalent stress range results from change of cut off point and bar width. In addition, we analyze the variable of RMC and RMS model due to the cut off point and bar width of the measured stress history which influencs the prediction of fatigue life in the steel railroad bridge. The simulated stress time history is carried out by the superposition method incorporating the vertical load with rotation moment obtained from the Hermition interpolation function, and compared with developing stress results from measured maxi mum stress. Through this study, we can estimate the remaining fatigue life from a safety point of view and comparative accuracy.

  • PDF

Calculation of Dynamic Stress-Time History for a Vehicle Using Flexible Body Dynamics Model (유연체 동력학 모델을 이용한 차량의 동응력-시간선도 계산)

  • Park, Chan-Jong;Yim, Hong-Jae;Park, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.702-707
    • /
    • 2000
  • Under the rapid change of a new vehicle model, it is necessary to develop a durability analysis technique using computer simulation. In order to do this. reliable dynamic stress-time history for the vehicle components must be calculated on various road conditions. In this paper, a full vehicle simulation model which is composed of flexible frame and chassis components is proposed and verified its reliability from the comparison with field test data. Finally, dynamic stress-time history on the rear chassis components is predicted with hybrid and modal superposition method.

  • PDF

Stress History of a Bridge Estimated from Statistical Analysis of Traffic Bow (교통류의 통계적 해석으로부터 추정한 교량의 응력이력)

  • Yong, Hwan Sun;Choi, Kang Hee;Choi, Sung Kweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 1989
  • The stress history of a bridge is different depending on the characteristic of traffic flow. Because the flow is varied with vehicle type, weight and headway time etc., statistical analysis in bridges is necessary to estimate the history by traffic flow. By applying the statistical analyses in fracture mechanics, the remaining service life of the structure can be estimated. In this paper, 1)the statistical analysis of vehicle type, weight and headway time etc. to analysis randomness of traffic flow, 2)measuring and analysis of stress history of a real bridge, 3)reappearance of stress history by Monte-Carlo Simulation using constitution ratio of vehicle type, weight and headway time as probabilitic variable, 4)comparision of the calculated and modelled stress history, 5)calculation of reduction factor, 6)comparision of frequency of stress range depending on span length etc. were performed. From the results, the basic modelled stress history which is necessary for the method of estimation of the remaining service life of the structure could be suggested.

  • PDF

A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures (차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구)

  • 이상범;박태원;임홍재
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.686-691
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

Calculation of Dynamic Stress Time History of a Component Using Computer Simulation (컴퓨터 시뮬레이션을 이용한 동응력 이력 계산기술 개발)

  • 박찬종;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.52-60
    • /
    • 2000
  • In order to design a reliable machine component efficiently, it is necessary to set up the process of durability analysis using computer simulation technique. In this paper, two methods for dynamic stress calculation, which are basis of durability analysis, are reviewed. Then, a user-oriented dynamic stress analysis program is developed from these two algorithms together with a general-purpose flexible body dynamic analysis and structural analysis programs. Finally, a slider-crank mechanism which has a flexible connecting-rod is chosen to show the special characteristics of these two dynamic stress calculation methods.

  • PDF

Accelerated Durability Analysis of Suspension System (Suspension System의 가속내구해석)

  • 민한기;정종안;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • The durability test, along with the crashworthiness test, requires the most time and expense in the vehicle development process. The durability design using CAE tools reduces the time required for both the durability test and actual vehicle production. Existing dynamic stress analyses designed fir the analysis of vehicle fatigue mainly calculate the dynamic stress history and fatigue after performing dynamic analysis and stress analysis with relevant software applications and then superpositioning the dynamic load history and stress influence coefficient at each joint. This approach is a complex process, taking into account the flexibility of the parts. It is, however, incapable of giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires that the analysts have an expertise in software applications of various kinds or an expert in each area must perform the analysis. This requires as a great deal of manpower and time. In order to complement the existing approaches for dynamic stress analysis, this study aims at the following: (1) to suggest the simple and accurate analysis technique which is capable of producing all the possible necessary results; (2) to reduce dramatically the time and manpower needed to construct a model designed to analyze dynamics, quasi-static stress, and fatigue; and (3) to enable an accurate analysis of fatigue by improving the accuracy of dynamic stress. we verify the presented analysis method through durability evaluation of the knuckle of passenger car.

Pre- and Post Processing System on Prediction Analysis of Thermal Stress in Mass Concrete Structure (매스콘크리트의 온도균열 예측해석에서의 전후처리 시스템 개발에 관한 연구)

  • 김유석;강석화;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.270-274
    • /
    • 1996
  • Until recently pre & post-processing of finite element model has been heavily relied on expensive graphic peripheral devices. But today, with the aid of inexpensive microcomputers, very effective pre & postprocessor graphics has been developed. In this study, Pre & Post processor(MASSPRE, MASSPOST) of prediction analysis of thermal stress in mass concrete structure is developed. The developed pre & post processors are raise to the efficiency in making input data for the main program and analysis of the results produced by the main program. This MASSPOST presents a stress contour graph, volume slice, time-temperature history graph, time-stress history graph, etc.

  • PDF

Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope - examples and parametrical study

  • Kmet, S.;Holickova, L.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.591-607
    • /
    • 2004
  • The substance of the use of the derived non-linear creep constitutive equations under variable stress levels (see first part of the paper, Kmet 2004) is explained and the strategy of their application is outlined using the results of one-step creep tests of the steel spiral strand rope as an example. In order to investigate the creep strain increments of cables an experimental set-up was originally designed and a series of tests were carried out. Attention is turned to the individual main steps in the production and application procedure, i.e., to the one-step creep tests, definition of loading history, determination of the kernel functions, selection and definition of constitutive equation and to the comparison of the resulting values considering the product and the additive forms of the approximation of the kernel functions. To this purpose, the parametrical study is performed and the results are presented. The constitutive equations of non-linear creep of cable under variable stress history offer a strong tool for the real simulation of stochastic variable load history and prediction of realistic time-dependent response (current deflection and stress configuration) of structures with cable elements. By means of suitable stress combination and its gradual repeating various loads and times effects can be modelled.