• Title/Summary/Keyword: Stress strain curve

Search Result 634, Processing Time 0.024 seconds

Modeling of Material Properties of Fiber-Reinforced High Strength Concrete (섬유 보강 고강도 콘크리트의 재료 특성 모델링)

  • Yang, In-Hwan;Park, Ji-Hun;Choe, Jeong-Seon;Joh, Changbin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, material properties of steel fiber reinforced high strength concrete (FRHSC) with the compressive strength of about 120MPa were modeled. Steel fiber content of 1.0%, 1.5%, and 2.0% was considered as experimental variable. First of all, compressive strength tests were carried out to determine compressive characteristics of concrete, and compressive stress-strain curves were modeled. For conventional concrete with moderate compressive strength, the stress-strain curves are in the form of parabolic curves, but in the case of high strength concrete reinforced with steel fiber, the curves increase linearly in the form of the straight line. In addition, to understand the tensile properties of FRHSC, the crack mouth opening displacement (CMOD) test was performed, and the tensile stress-CMOD curve was calculated through inverse analysis. When the steel fiber content increased from 1.0% to 1.5%, there was a significant difference of tensile strength. However, when the amount of steel fiber was increased from 1.5% to 2.0%, there was no significant difference of tensile strength, which might result from the poor dispersion and arrangement of steel fiber in concrete.

Damage Tolerant Design for the Tilt Rotor UAV (틸트 로터형 무인항공기의 손상허용 설계)

  • Park, Young Chul;Im, Jong Bin;Park, Jung Sun
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

A Comparative Study on Ice Load Characteristics between General and Ice-breaking Operations in Ice-covered Waters (빙해지역 일반 운항 및 쇄빙 운항 시의 빙하중 특성 비교 연구)

  • Lee, Min-Woo;Kwon, Yong-Hyeon;Rim, Chae-Whan;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.28-33
    • /
    • 2015
  • The icebreaking research vessel ARAON had her second ice trial in the Arctic Ocean from July 16 to August 12, 2010. In this study, the ice loads measured during the “general” operation and “ice breaking” operation in ice-covered waters were analyzed and compared. Whereas the “general” operation stands for the voyage in the water partially covered by ice, the “ice breaking” operation involved substantial ice floes for the ice breaking performance test. Based on the measured data, comparisons of the relationship between the ship speed and ice load, and between the locations of strain gauges and ice loads were investigated. Peak stresses higher than 20 MPa were found. The longitudinal and vertical correlations between the measurement location and ice load were analyzed, and the probability of peak stress was calculated. As a result, the probability function for higher ice loads during both operation modes was expressed in an exponential and power forms.

Development of Reinforced Bio-filament Composites Composed of Agricultural By-product for 3D Printing Technologies

  • Cheong, Kyu Min;Kim, Hye Been;Seo, Yu Ri;Lim, Ki Taek
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.108-108
    • /
    • 2017
  • In this study, biocomposite filaments with agricultural by-products can be used in extrusion-based 3D (Three-dimensional) printing. Extrusion-based 3D printing stands as a promising technique owing to its versatility. We hypothesized that bio-filament composite consisted of something derived from agricultural by-products could be used as 3D printing materials that could overcome the drawbacks of PCL (poly-caprolactone). Bio-filament mixed with PCL and agricultural by-products was defined as r-PCL in this study. In order to find it out the optimal mixing ratio of filaments, we had investigated PCL, r-PCL 10%, r-PCL 20%, r-PCL 50% separately. The morphological and chemical characteristics of the filaments were analyzed by FE-SEM (Field emission scanning electron microscope) and EDX (Energy-dispersive X-Ray spectroscopy), and the mechanical properties were evaluated by stress-strain curve, water contact angle, and cytotoxicity analysis. Results of this study have been shown as a promising way to produce eco-friendly bio-filaments composite for FDM (Fused deposition modeling) method based 3D printing technology. Thus, we could establish biomimetic scaffolds based on bio-printer filaments mixed with agricultural by-product.

  • PDF

Prediction of Equivalent Elastic Modulus for Flexible Textile Composites according to Waviness Ratio of Fiber Tows (섬유다발의 굴곡도에 따른 유연직물복합재료의 등가탄성계수 예측)

  • Suh, Young-W.;Kim, Sung-Joon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • In this study, the equivalent elastic modulus of flexible textile composites was predicted by nonlinear finite element analysis. The analysis was carried out considering the material nonlinearity of fiber tows and the geometrical nonlinearity during large deformation using commercial analysis software, ABAQUS. To account for the geometrical nonlinearity due to the large shear deformation of fiber tows, a user defined material algorithm was developed and inserted in ABAQUS. In results, nonlinear stress-strain curve for the flexible textile composites under uni-axial tension was predicted from which effective elastic modulus was obtained and compared to the test result. The effective elastic moduli were calculated for the various finite element models with different waviness ratio of fiber tow.

Measurement of Dynamic Compressive Properties of Apples using the Oscillatory Test

  • Lee, Jong-Whan;Tan, Jinglu;Waluyo, Sri
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.28-35
    • /
    • 2012
  • Purpose: This study performed the oscillatory test using the texture analyzer to characterize the viscoelastic behavior of apples such as the storage modulus (E'), the loss modulus (E"), the complex modulus (${\mid}E^*{\mid}$) and the energy dissipated per cycle ($W_{diss}$). Methods: The sinusoidal deformation with the frequency of 1-10 Hz and the maximum displacement of 0.1 mm were applied to the flesh tissues of Fuji, Golden Delicious and Red Delicious apples. The Lissajous figure was used to measure the phase angle(${\delta}$) between stress and strain curve. Results: Trigger force was critical to the measurement of the phase angle. E', E", ${\mid}E^*{\mid}$ and Wdiss were measured using the Lissajous figure and the phase angle. The complex modulus of Golden Delicious apple was significantly lower than those of Fuji apple and Red Delicious apple. Conclusions: Apple flesh was exhibiting more elasticity at low frequency, and more viscosity at high frequency. Dynamic compressive properties of Fuji apple were similar to those of Red Delicious apple but significantly different from those of Golden Delicious apple.

Vision Based Non Contact Elongation Measurement in Universal Testing Machine [UTM] (만능물성시험기[UTM]에 있어서 새로운 영상기반의 비접촉식 신룰측정방법)

  • No, Jae-Myeong;Park, Hye-Won;Kim, Ho-Cheol;Kim, Yong-Dae;Lee, Wang-Heon;Park, Yong-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.298-299
    • /
    • 2008
  • The materials are measured and analyzed by the UTM combined with a contact type extensometer so as to analyze the characteristics such as strain-stress curve. However, the JIG and Fixture utilized in the UTM according to the standard [ASTM] can not only scratch the specimens but also have a serious distort on test result by the weight of the ZIG itself. In this paper we propose a moncular vision based visual extensometer [VE] securing the measuring accuracy using a new cross correlation in detecting the two feature points previously marked on the specimen from two successive images, and verify the usefulness of this VE through a real experiment on the UTM.

  • PDF

A Study on Tensile Behavior of Transparent Polycarbonate (PC) Plate in the High Temperature (투명 폴리카보네이트 판재의 고온 인장 거동에 관한 연구)

  • Lee, Ho Jin;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Recently, several researchers made their endeavor to manufacture the photobioreactor(PBR) with characteristic shapes form vacuum and blow forming process. Hence, behaviors of the transparent polycarbonate(PC) plate in the high temperature region should be examined to obtain the desired PBR case via vacuum and blow forming processes. The aim of this paper is to investigate tensile behavior of PC plate in the high temperature. Various tensile tests were performed using high temperature tensile testing machine. The influence of tensile speed, thickness and ambient temperature on tensile behavior in the high temperature was examined. The flow stress and tensile strength augmented when the tensile speed increased. In order to obtain proper flow curves with strain rate effects for different temperature of specimen, G'sell-Jonas model was adopted. The material constants of the G'sell-Jonas model were estimated. The flow curves of the PC plate considering the tensile speed, specimen thickness and temperature were obtained.

Correlation between Ultrasonic Nonlinearity and Elastic Nonlinearity in Heat-Treated Aluminum Alloy

  • Kim, Jongbeom;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.115-121
    • /
    • 2017
  • The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke's equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at $300^{\circ}C$ for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke's equation. The results showed that the variations in these parameters were in good agreement with each other.

An analytical analysis of a single axially-loaded pile using a nonlinear softening model

  • Wu, Yue-dong;Liu, Jian;Chen, Rui
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.769-781
    • /
    • 2015
  • The skin friction of a pile foundation is important and essential for its design and analysis. More attention has been given to the softening behaviour of skin friction of a pile. In this study, to investigate the load-transfer mechanism in such a case, an analytical solution using a nonlinear softening model was derived. Subsequently, a load test on the pile was performed to verify the newly developed analytical solution. The comparison between the analytical solution and test results showed a good agreement in terms of the axial force of the pile and the stress-strain relationship of the pile-soil interface. The softening behaviour of the skin friction can be simulated well when the pile is subjected to large loads; however, such behaviour is generally ignored by most existing analytical solutions. Finally, the effects of the initial shear modulus and the ratio of the residual skin friction to peak skin friction on the load-settlement curve of a pile were investigated by a parametric analysis.