• 제목/요약/키워드: Stress softening

검색결과 258건 처리시간 0.019초

The ground response curve of underwater tunnels, excavated in a strain-softening rock mass

  • Fahimifar, Ahmad;Ghadami, Hamed;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.323-359
    • /
    • 2015
  • This paper presents an elasto-plastic model for determination of the ground response curve of a circular underwater tunnel excavated in elastic-strain softening rock mass compatible with a nonlinear Hoek-Brown yield criterion. The finite difference method (FDM) was used to propose a new solution to calculate pore water pressure, stress, and strain distributions on periphery of circular tunnels in axisymmetric and plain strain conditions. In the proposed solution, a modified non-radial flow pattern, for the hydraulic analysis, is utilized. To evaluate the effect of gravitational loads and variations of pore water pressure, the equations concerning different directions around the tunnel (crown, wall, and floor) are derived. Regarding the strain-softening behavior of the rock mass, the stepwise method is executed for the plastic zone in which parameters of strength, dilatancy, stresses, strains, and deformation are different from their elasto-plastic boundary values as compared to the tunnel boundary values. Besides, the analytical equations are developed for the elastic zone. The accuracy and application of the proposed method is demonstrated by a number of examples. The results present the effects of seepage body forces, gravitational loads and dilatancy angle on ground response curve appropriately.

고온 변형 곡선을 이용한 동적 재결정 해석과 동적 상변태의 조기 예측 (Precise Flow Stress Analysis for the Occurrence of Dynamic Ferritic Transformation and Dynamic Recrystallization of Austenite in Low Carbon Steel)

  • 박노근
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.779-786
    • /
    • 2018
  • There have been previous attempts to observe the occurrence of dynamic ferritic transformation at temperatures even above $Ae_3$ in a low-carbon steel, and not only in steels, but recently also in titanium alloys. In this study, a new approach is proposed that involves treating true stress-true strain curves in uniaxial compression tests at various temperatures, and different strain rates in 0.1C-6Ni steel, which is a model alloy used to decelerate the kinetics of ferrite transformation from austenite. The initial flow stress up to peak stress was used to analyze the change in dynamic softening phenomena, such as dynamic recovery, dynamic recrystallization, and dynamic transformation. It is worth mentioning that for predicting the occurrence of dynamic transformation, flow stress before reaching peak stress is much more sensitive to the change in the dynamic softening rate due to dynamic transformation, compared to peak stress. It was found that the occurrence of dynamic ferritic transformation could be successfully obtained even at temperatures above $Ae_3$ once the deformation condition was satisfied. This deformation condition is a function of both the strain rate and the deformation temperature, which can be described as the Zener - Hollomon parameter. In addition, the driving force of dynamic ferritic transformation might be much less than that of the dynamic recrystallization of austenite at a given deformation condition. By applying this technique, it is possible to predict the occurrence of dynamic transformation more sensitively compared with the previous analysis method using peak stress during deformation.

GSI 지수의 변형률 연화를 고려한 원형터널의 탄소성 해석 (Elasto-plastic Analysis of Circular Tunnel with Consideration of Strain-softening of GSI Index)

  • 이연규;박경순
    • 터널과지하공간
    • /
    • 제20권1호
    • /
    • pp.49-57
    • /
    • 2010
  • 이 연구에서는 정수압 지압 조건의 암반에 굴착되는 원형 터널의 탄소성 거동 해석을 위해 GSI 지수의 변형률연화를 고려한 탄소성 해석법이 제안되었고, 그 적용성이 검토되었다. 제안된 수치해석법은 Lee & Pietruszczak(2008)의 탄소성 해석방법을 수정하여 개발되었다. 터널 주변 암반에서는 발파와 굴착에 의한 암반의 손상으로 GSI 지수의 저하가 야기될 수 있다는 가정 하에 GSI 지수의 변형률연화 개념을 도입하였다. 일반화된 Hoek-Brown 식의 강도정수들은 GSI 값을 이용하여 경험적으로 계산할 수 있으므로 GSI 지수의 변형률연화 개념을 도입함으로써 이 강도정수들의 변형률연화가 해석에 반영되도록 하였다. 제안된 방법의 적합성을 검토하기위하여 여러 해석조건에서 원형터널의 탄소성 해를 구하고 그 결과를 고찰하였다.

Mohr-Coulomb 암반에 굴착된 원형 터널의 변형률연화 거동해석 (Strain-Softening Behavior of Circular Tunnel Excavated in Mohr-Coulomb Rock Mass)

  • 이연규
    • 터널과지하공간
    • /
    • 제16권6호
    • /
    • pp.495-505
    • /
    • 2006
  • 정수압 상태의 등방 무한 매질에 원형 터널이 굴착될 때 터널 주변부에서 발생되는 응력 및 변위 분포를 해석하는 것은 암반공학의 가장 기본적인 문제들 중의 하나이다. 암반을 탄성, 완전소성, 취성-소성 거동체로 가정한 경우 응력 및 변위 분포에 대한 정해가 알려져 있다. 그러나 변형률연화를 가정한 경우는 정해가 존재하지 않으며 여러 가지 가정에 기초한 수치해석적 근사해들이 보고되고 있을 뿐이다. 이 연구에서는 Mohr-Coulomb 암반을 대상으로 이러한 원형 터널의 변형률연화 거동을 간단하게 해석할 수 있는 수치해석 방법을 소개하였다. 이 방법은 변형률연화 거동 뿐만아니라 취성-소성 및 완전소성 거동의 해석에도 적용이 가능하다 정해가 알려진 취성-소성 거동의 검증을 통하여 제안된 모델의 정확성을 입증하였다. 변형률연화 거동해석 예로서 연화지수에 대한 매개변수 해석을 실시하였고 지반반응곡선을 작성하였다. 탄소성 해석시 터널 주변의 변위 분포 특성은 소성영역의 체적팽창성에 크게 영향을 받음을 알 수 있었다.

Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb

  • Moradi, Golam;Abbasnejad, Alireza
    • Geomechanics and Engineering
    • /
    • 제8권6호
    • /
    • pp.829-844
    • /
    • 2015
  • In the current paper the results of a numerical simulation that were verified by a well instrumented experimental procedure for studying the arching effect over a trapdoor in sand is presented. To simulate this phenomenon with continuum mechanics, the experimental procedure is modeled in ABAQUS code using stress dependent hardening in elastic state and plastic strain dependent frictional hardening-softening with Mohr Coulomb failure criterion applying user sub-routine. The apparatus comprises rectangular trapdoors with different width that can yield downward while stresses and deformations are recorded simultaneously. As the trapdoor starts to yield, the whole soil mass deforms elastically. However, after an immediate specified displacement, depending on the width of the trapdoor, the soil mass behaves plastically. This behavior of sand occurs due to the flow phenomenon and continues until the stress on trapdoor is minimized. Then the failure process develops in sand and the measured stress on the trapdoor shows an ascending trend. This indicates gradual separation of the yielding mass from the whole soil body. Finally, the flow process leads to establish a stable vault of sand called arching mechanism or progressive collapse of the soil body.

A simple prediction procedure of strain-softening surrounding rock for a circular opening

  • Wang, Feng;Zou, Jin-Feng
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.619-626
    • /
    • 2018
  • A simple prediction procedure was investigated for calculating the stresses and displacements of a circular opening. Unlike existed approaches, the proposed approach starts each step with a radius increment. The stress for each annulus could be obtained analytically, while strain increments for each step can be determinate numerically from the compatility equation by finite difference approximation, flow rule and Hooke's law. In the successive manner, the distributions of stresses and displacements could be found. It should be noted that the finial radial stress and displacement were equal to the internal supporting pressure and deformation at the tunnel wall, respectively. By assuming different plastic radii, GRC and the evolution curve of plastic radii and internal supporting pressures could be obtained conveniently. Then the real plastic radius can be calculated by using linear interpolation in the evolution curve. Some numerical and engineering examples were performed to demonstrate the accuracy and validity for the proposed procedure. The comparisons results show that the proposed procedure was faster than that in Lee and Pietrucszczak (2008). The influence of annulus number and dilation on the accuracy of solutions was also investigated. Results show that the larger the annulus number was, the more accurate the solutions were. Solutions in Park et al. (2008) were significantly influenced by dilation.

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.

Nylon 66의 무비례 하중에 대한 과응력 모델 (An Overstress Model for Non-proportional Loading of Nylon 66)

  • 호광수
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2056-2061
    • /
    • 2001
  • Non-proportional loading tests of Nylon 66 at room temperature exhibit path dependent behavior and plasticity-relaxation interactions. The uniaxial formulation of the viscoplasticity theory based on overstress (VBO), which has been used to reproduce the nonlinear strain rate sensitivity, relaxation, significant recovery and cyclic softening behaviors of Nylon 66, is extended to three-dimensions to predict the response in strain-controlled, comer-path tests. VBO consists of a flow law that is easily written for either the stress or the strain as the independent variable. The flow law depends on the overstress, the difference between the stress and the equilibrium stress that is a state variable in VBO. The evolution law of the equilibrium stress in turn contains two additional state variables, the kinematic stress and the isotropic stress. The simulations show that the constitutive model is competent at modeling the deformation behavior of Nylon 66 and other solid polymers.

A new approach for the cylindrical cavity expansion problem incorporating deformation dependent of intermediate principal stress

  • Zou, Jin-Feng;Xia, Ming-yao
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.347-360
    • /
    • 2017
  • The problem of cylindrical cavity expansion incorporating deformation dependent of intermediate principal stress in rock or soil mass is investigated in the paper. Assumptions that the initial axial total strain is a non-zero constant and the axial plastic strain is not zero are defined to obtain the numerical solution of strain which incorporates deformation-dependent intermediate principal stress. The numerical solution of plastic strains are achieved by the 3-D plastic potential functions based on the M-C and generalized H-B failure criteria, respectively. The intermediate principal stress is derived with the Hook's law and plastic strains. Solution of limited expansion pressure, stress and strain during cylindrical cavity expanding are given and the corresponding calculation approaches are also presented, which the axial stress and strain are incorporated. Validation of the proposed approach is conducted by the published results.

철근(鐵筋)콘크리트 구조물(構造物)의 비선형(非線型) 해석(解析)에 관한 연구(硏究) (A Study on Nonlinear Analysis of Reinforced Concrete Structures)

  • 장동일;곽계환
    • 대한토목학회논문집
    • /
    • 제7권2호
    • /
    • pp.69-77
    • /
    • 1987
  • 철근 콘크리트 구조물의 재료적 비선형 해석을 위해 유한요소법을 적용하였다. 2 축응력 상태에서의 콘크리트 거동은 인장균열과 균열사이의 인장증강효과(tension stiffening effect) 그리고 최대압축 강도를 넘어서의 변형연화(strain-softening) 효과를 고려하는 비선형 구성 방정식으로 나타냈다. 콘크리트를 직교성 (orthotropic) 재료로 가정함으로써 비선형 탄성체로 간주하고, 등가일축변형도 개념을 사용한 등가 일축 응력-변형도(equivalent uniaxial stress-strain) 관계식으로 모형화하고, 철근 보강재는 Bauschinger 효과를 갖는 탄소성 변형 경화재료(elasto-plastic strain-hardening material)로 모형화 했다. 평면 응력 상태에서 철근콘크리트 보의 모형화는 각 절점에 2 개의 자유도를 갖는 사각형요소로 모형화하여 적용 시쳤으며, 이로부터 구한 유한요소해석의 결과치를 실험결과치의 중앙처짐, 응력, 변형율 그리고 균열성장과정에 대하여 비교 검토 하였다.

  • PDF