• Title/Summary/Keyword: Stress softening

Search Result 258, Processing Time 0.023 seconds

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo;Zo, Jin-feng;An, Wei
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2020
  • In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

A Constitutive Model for Polymer-Bonded Explosive Simulants Considering Stress Softening and Residual Strain (응력연화와 잔류변형을 고려한 복합화약 시뮬런트의 구성방정식연구)

  • Yeom, KeeSun;Huh, Hoon;Park, Jungsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.844-852
    • /
    • 2014
  • PBX simulant is known to exhibit highly nonlinear behaviors of deformation such as the stress softening, hysteresis under cyclic loading, residual strain after unloading, and aging. This paper proposes a new pseudo-elastic model for PBX simulant considering stress softening and residual strain. Uniaxial loading and unloading tests at quasi-static states were carried out in order to obtain the mechanical properties of the PBX simulants. And then the Dorfmann-Ogden model is modified to make it consistent with the test result of PBX simulants. Prediction with the new model shows a good correspondence to the experimental data demonstrating that the model properly describes stress softening and residual strain of PBX simulants.

The Effect of the Injection Molding Conditions of Plastics on the Stress Relaxation (플라스틱의 사출성형조건이 응력완화에 미치는 영향)

  • 정석주;황봉갑
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 1998
  • In this study, proper injection molding condition has been studied through stress relaxation tests in order to experimentally investigate the effect of the condition on softening of mold product, using specimens produced under the different conditions according to the recommendation of resin manufactures. As a result, softening of the specimens was found to be strongly influenced by material melting temperature. The specimen with higher material melting temperature is found to have lower softening. However, softening of the specimen with lower mold temperature has an decrement, compared with other specimens. In particular, specimen with notch is influenced by mold temperature. The softening increase with higher injection speed and pressure. Finally in order to improve softening, material melting temperature, injection speed and injection pressure were found to be increased with low mold temperature.

  • PDF

Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete

  • Yu, Kequan;Lu, Zhoudao
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.199-213
    • /
    • 2015
  • The residual fracture toughness of post-fire normal-strength concrete subjected up to $600^{\circ}C$ is considered by the wedge splitting test. The initial fracture toughness $K_I^{ini}$ and the critical fracture toughness $K_I^{un}$ could be calculated experimentally. Their difference is donated as the cohesive fracture toughness $K_I^c$ which is caused by the distribution of cohesive stress on the fracture process zone. A comparative study on determining the residual fracture toughness associated with three bi-linear functions of the cohesive stress distribution, i.e. Peterson's softening curve, CEB-FIP Model 1990 softening curve and Xu's softening curve, using an analytical method is presented. It shows that different softening curves have no significant influence on the fracture toughness. Meanwhile, comparisons between the experimental and the analytical calculated critical fracture toughness values further prove the validation of the double-K fracture model to the post-fire concrete specimens.

Ultimate Compressive Strength Analysis of TMCP High Tensile Steel Plates with HAZ Softening(2nd Report) (HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 제 2 보)

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 1991
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The softening region which has lower yield stress than base metal is located to prevent cracking in the conventional high tensile steel. Also, thermo mechanical control process(TMCP) steel with low carbon equivalent has the softening region which occurs in the heat affected zone when high heat input weld is carried out. The softening region in the high tensile steel gives rise to serious effect on structural strength such as tensile strength, fatigue strength and ultimate strength. In order to make a reliable structural design using high tensile steel plates, the influence of the softening on plate strength should be evaluated in advance. In the previous paper, the authors discussed the ultimate compressive strength of 50HT steel square plates with softening region. In this paper, the ultimate compressive strength with varying the yield stress of softening region and the aspect ratio of the plate is investigated by using the elasto-plastic large deformation finite element method.

  • PDF

A Study on the Fatigue Characteristics of Accelerated Cooled TMCP Steel's Welded Joint with High Heat Input (가속냉각형 TMCP강재 대입열 용접부의 피로특성)

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.6 no.1
    • /
    • pp.28-34
    • /
    • 1988
  • The fatigue test was carried out to evaluate the fatigue characteristics of the accelerated cooled (ACC) TMCP steel and its welded joint. From this study, it was confirmed that ACC TMCP steel has higher fatigue strength than conventional steels. After welding, however, the fatigue strength of ACC TMCP steel was deteriorated associated with HAZ softening when weld reinforcement was removed. On the other hand, with weld reinforcement, there is no effect of HAZ softening on the fatigue strength of welded joint because it is strongly dependant on the detail weld geometry i.e., stress concentration factor. Accordingly the fatigue strength of actual welded joint increases with decreasing the stress concentration factor of welded joint, regardless of HAZ softening.

  • PDF

Remaining life prediction of concrete structural components accounting for tension softening and size effects under fatigue loading

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.459-475
    • /
    • 2009
  • This paper presents analytical methodologies for remaining life prediction of plain concrete structural components considering tension softening and size effects. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. Size effect has been accounted for by modifying the Paris law, leading to a size adjusted Paris law, which gives crack length increment per cycle as a power function of the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening effects and size effect in the computation of SIF and remaining life prediction have been presented. Numerical studies have been conducted on three point bending concrete beams under constant amplitude loading. The predicted remaining life values with the combination of tension softening & size effects are in close agreement with the corresponding experimental values available in the literature for all the tension softening models.

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

A Study on Dynamic Crack-Tip Fields in a Strain Softening Material

  • Jang, Seok-Ki;Xiankui Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.494-502
    • /
    • 2003
  • The near-tip field of mode-I dynamic cracks steadily propagating in a strain softening material is investigated under plane strain conditions. The material is assumed to be incompressible and its deformation obeys the $J_2$ flow theory of plasticity. A power-law stress-strain relation with strain softening is adopted to account for the damage behavior of materials near the dynamic crack tip. By assuming that the stresses and strain have the same singularity at the crack tip. this paper obtains a fully continuous dynamic crack-tip field in the damage region. Results show that the stress and strain components the same logarithmic singularity of (In(R/r))$\delta$, and the angular variations of filed quantities are identical to those corresponding to the dynamic cracks in the elastic-perfectly plastic material.

Analysis of Hot Forming Process with Flow Softening by Dynamic Recrystallization (동적 재결정에 의한 연화를 고려한 열간성험공정 해석)

  • 방원규;이종수;장영원
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.137-143
    • /
    • 2001
  • The change of flow stress due to dynamic recrystallization during hot forming process is investigated. A series of mechanical tests has been conducted at various temperatures, and constitutive relations and recrystallization kinetics were formulated from the test results. The effect of dynamic recrystallization to the flow stress was implemented to a commercial FEM code by conditioned remapping of state variables. The datum strain of stress compensation was optimized to minimize the overestimation of forming loads. Suggested datum was formulated as an exclusive function of critical strain for recrystallizalion and validated by mechanical tests and microstructural observations.

  • PDF