• Title/Summary/Keyword: Stress signaling

Search Result 593, Processing Time 0.024 seconds

The Influence of the Sympathetic Nervous System on the Development and Progression of Cancer (교감신경계가 암의 발전과 진행에 미치는 영향)

  • Park, Shin-Hyung;Chi, Gyoo-Yong;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.116-129
    • /
    • 2018
  • Living creatures possess long-conserved mechanisms to maintain homeostasis in response to various stresses. However, chronic and continuous exposure to stress can result in the excessive production of stress hormones, including catecholamines, which have harmful effects on health. Studies on the relationship between the sympathetic nervous system (SNS) and cancer have been conducted based on the traditional hypothesis that stress can promote cancer progression. Many preclinical and epidemiological studies have suggested that the regulation of ${\beta}$-adrenergic signaling, which mediates SNS activity, can suppress the progression of solid tumors. SNS activation has highly pleiotropic effects on tumor biology, as it stimulates oncogenes, survival pathways, the epithelial - mesenchymal transition, and invasion. Moreover, it inhibits DNA repair and programmed cell death and regulates the tumor microenvironment, including immune cells, endothelial cells, the extracellular matrix, mesenchymal cells, and adipocytes. Although targeted therapies on the molecular basis of tumor proliferation are currently receiving increased attention, they have clinical limitations, such as the compensatory activation of other signaling pathways, emergence of drug resistance, and various side effects, which raise the need for pleiotropic cancer regulation. This review summarizes the effects of the SNS on the development and progression of cancer and discusses the clinical perspectives of ${\beta}$-blockade as a novel therapeutic strategy for this disease.

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

Effect of low intensity pulsed ultrasound in activating the mitogen-activated protein kinase signaling pathway and inhibition inflammation cytokine synthesis in chondrocytes

  • Kim, Eun-Jung;Kim, Gye-Yeop
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2014
  • Objective: Low intensity pulsed ultrasound (LIPUS) has been shown to accelerate cell proliferation and tissue healing in both animal models and clinical trials. However, details of the clinical effects of LIPUS have not been well characterized. The aim of this study was to investigate the effect of LIPUS on mitogen-activated protein kinase (MAPK) activation in rat articular chondrocytes. Design: Cross-sectional study. Methods: Chondrocyte were cultured in six well cell culture plates for 72 hours at $37^{\circ}C$ with 5% $CO_2$, and then exposed to LIPUS at 1.5 MHz frequency and $30-mW/cm^2$ power. Changes in chondrocyte activities were evaluated in response to oxydative stress in dose-dependent (0 and 300 uM) and time-dependent (0-24 hr) manner. The cell viability were analyzed using MTT [3-(4.5-dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide]. The expression of p38 MAPK was measured using western blotting. Results: Oxidative stress was induced in rat chondrocytes using hydrogen peroxide ($H_2O_2$). The cell viability was decreased in chondrocytes after the $H_2O_2$ dose and time-dependent treatment. The p38 MAPK phosphorylation occurred at a significantly increased rate after $H_2O_2$ treated (p<0.05). Expression of p38 MAPK was decreased in the p38 inhibitor groups compared with the oxidative stress-induced chondrocyte damage via the p38 MAPK signaling pathways (p<0.05). Conclusions: It could be concluded that LIPUS can inhibit oxidative stress-induced chondrocyte damage via the p38 MAPK signaling pathways.

A plant-based multivitamin, multimineral, and phytonutrient supplementation enhances the DNA repair response to metabolic challenges

  • Yeo, Eunji;Hong, Jina;Kang, Seunghee;Lee, Wonyoung;Kwon, Oran;Park, Eunmi
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.450-461
    • /
    • 2022
  • Purpose: DNA damage and repair responses are induced by metabolic diseases and environmental stress. The balance of DNA repair response and the antioxidant system play a role in modulating the entire body's health. This study uses a high-fat and high-calorie (HFC) drink to examine the new roles of a plant-based multivitamin/mineral supplement with phytonutrients (PMP) for regulating the antioxidant system and cellular DNA repair signaling in the body resulting from metabolic stress. Methods: In a double-blind, randomized, parallel-arm, and placebo-controlled trial, healthy adults received a capsule containing either a PMP supplement (n = 12) or a placebo control (n = 12) for 8 weeks. Fasting blood samples were collected at 0, 1, and 3 hours after consuming a HFC drink (900 kcal). The blood samples were analyzed for the following oxidative stress makers: areas under the curve reactive oxygen species (ROS) levels, plasma malondialdehyde (MDA), erythrocytes MDA, urinary MDA, oxidized low-density lipoprotein, and the glutathione:oxidized glutathione ratio at the time points. We further examined the related protein levels of DNA repair signaling (pCHK1 (Serine 345), p-P53 (Serine 15), and 𝛄H2AX expression) in the plasma of subjects to evaluate the time-dependent effects of a HFC drink. Results: In a previous study, we showed that PMP supplementation for eight weeks reduces the ROS and endogenous DNA damage in human blood plasma. Results of the current study further show that PMP supplementation is significantly correlated with antioxidant defense. Compared to the placebo samples, the blood plasma obtained after PMP supplementation showed enhanced DNA damage response genes such as pCHK1(Serine 345) (a transducer of DNA response) and 𝛄H2AX (a hallmark of DNA damage) during the 8 weeks trial on metabolic challenges. Conclusion: Our results indicate that PMP supplementation for 8 weeks enhances the antioxidant system against oxidative stress and prevents DNA damage signaling in humans.

Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds

  • Yuwares Malila;Tanaporn Uengwetwanit;Pornnicha Sanpinit;Wipakarn Songyou;Yanee Srimarut;Sajee Kunhareang
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • Objective: The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). Methods: Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35℃±1℃ for 6 h, followed by 26℃±1℃ for 18 h) for 20 days. Control group was raised under a constant temperature of 26℃±1℃. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermal-stressed groups were compared within the same breeds. Results: Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. Conclusion: The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.

Stress-induced biphasic ethylene and ROS biosynthesis are synergistically interacted in cell damage (스트레스에 의한 식물세포 손상에서 Biphasic Reactive Oxygen Species(ROS)와 Ethylene 생합성의 Synergism 효과)

  • Ji, Na-Ri;Park, Ky-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Although reactive oxygen species (ROS) are inevitable by-products of many redox reactions in eukaryotic cells, they play a crucial role as signaling molecules in many cellular processes for development and defense response to abiotic stresses. The biphasic ROS production which was peaked twice in a first transient phase and a second massive phase was occurred after treatment of abiotic stress such as oxidative stress, high salinity. This biphasic generation of ROS was followed by the biphasic production of stress hormone, ethylene. The mechanism of interactions between ROS and ethylene biosynthesis is studied in tobacco (Nicotiana tabaccum L.) plants under the abiotic stresses. The stress-induced ethylene production was significantly inhibited in RbohD-AS and RbohF-AS, in which antisense expression of NADPH oxidase genes was performed. The accumulation of ROS, which was determined by DAB and DCFH-DA staining, was significantly decreased after abiotic stresses in transgenic plants. The suppression of signaling with ethylene and ROS induced more tolerance in response to abiotic stress. The transgenic plants were more tolerant in MS medium supplemented with salinity stress in contrast with wild-type. Stress-induced cell damage determined by DNA fragmentation was decreased at phase II in those transgenic plants. Therefore, the first burst of ROS is more responsible for making a role as a signaling molecule during stress-induced response. These results suggested that ethylene and ROS act in a positive feedback cycle that results in mutual enhancement of ethylene and ROS production during stress-induced cell death.

Nanoparticle Induced Oxidative Stress in Cancer Cells: Adding New Pieces to an Incomplete Jigsaw Puzzle

  • Nogueira, Daniele Rubert;Rolim, Clarice M. Bueno;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4739-4743
    • /
    • 2014
  • Nanotechnology is an emerging field with many promising applications in drug delivery systems. Because of outstanding developments in this field, rapidly increasing research is directed to the development of nanocarriers that may enhance the availability of drugs to the target sites. Substantial fraction of information has been added into the existing scientific literature focusing on the fact that nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles. It is worth mentioning that oxidative stress regulates an array of cell signaling cascades that resulted in cancer cell damage. Accumulating experimental evidence over the years has shown that wide-ranging biological mechanisms are triggered by these NPs in cultured cells due to the unique properties of engineered nanoparticles. In this review, we have attempted to provide an overview of the signaling cascades that are activated by oxidative stress in cancer cells in response to different kinds of nanomaterials, including quantum dots, metallic and polymeric nanoparticles.

Arabidopsis PYL8 Plays an Important Role for ABA Signaling and Drought Stress Responses

  • Lim, Chae Woo;Baek, Woonhee;Han, Sang-Wook;Lee, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.471-476
    • /
    • 2013
  • Plants are frequently exposed to numerous environmental stresses such as dehydration and high salinity, and have developed elaborate mechanisms to counteract the deleterious effects of stress. The phytohormone abscisic acid (ABA) plays a critical role as an integrator of plant responses to water-limited condition to activate ABA signal transduction pathway. Although perception of ABA has been suggested to be important, the function of each ABA receptor remains elusive in dehydration condition. Here, we show that ABA receptor, pyrabactin resistance-like protein 8 (PYL8), functions in dehydration conditions. Transgenic plants overexpressing PYL8 exhibited hypersensitive phenotype to ABA in seed germination, seedling growth and establishment. We found that hypersensitivity to ABA of transgenic plants results in high degrees of stomatal closure in response to ABA leading to low transpiration rates and ultimately more vulnerable to drought than the wild-type plants. In addition, high expression of ABA maker genes also contributes to altered drought tolerance phenotype. Overall, this work emphasizes the importance of ABA signaling by ABA receptor in stomata during defense response to drought stress.

Role of ${\alpha}$-tocopherol in cellular signaling: ${\alpha}$-tocopherol inhibits stress-induced mitogen-activated protein kinase activation

  • Hyun, Tae-Kyung;Kumar, Kundan;Rao, Kudupudi Prabhakara;Sinha, Alok Krishna;Roitsch, Thomas
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.19-25
    • /
    • 2011
  • Tocopherols belong to the plant-derived poly phenolic compounds known for antioxidant functions in plants and animals. Activation of mitogen-activated protein kinases (MAPK) is a common reaction of plant cells in defense-related signal transduction pathways. We report a novel non-antioxidant function of ${\alpha}$-tocopherol in higher plants linking the physiological role of tocopherol with stress signalling pathways. Pre-incubation of a low concentration of $50{\mu}M$ ${\alpha}$-tocopherol negatively interferes with MAPK activation in elicitor-treated tobacco BY2 suspension culture cells and wounded tobacco leaves, whereas pre-incubated BY2 cells with ${\alpha}$-tocopherol phosphate did not show the inhibitory effect on stimuli-induced MAPK activation. The decreased MAPK activity was neither due to a direct inhibitory effect of ${\alpha}$-tocopherol nor due to the induction of an inhibitory or inactivating activity directly affecting MAPK activity. The data support that the target of ${\alpha}$-tocopherol negatively regulates an upstream component of the signaling pathways that leads to stress dependent MAPK activation.

Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors

  • Lee, Sae Rom;An, Eun Jung;Kim, Jaesang;Bae, Yun Soo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.