• Title/Summary/Keyword: Stress oscillation

Search Result 82, Processing Time 0.029 seconds

Flow Visualization of an Unsteady Airfoil at Low Reynolds Numbers (저 레이놀즈수에서 비정상 에어포일의 흐름 가시화)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.51-58
    • /
    • 2006
  • A boundary layer visualization was carried out in order to investigate the influence of Reynolds number on an oscillating airfoil. An NACA 0012 airfoil is sinusoidally pitched at the quarter chord point with oscillation amplitude of ${\pm}6^{\circ}$. A smoke-wire technique was employed to visualize the boundary layer and the near-wake. The freestream velocities are 1.98, 2.83 and 4.03m/s and corresponding chord Reynolds numbers are $2.3{\times}10^4,\;3.3{\times}10^4$, and $4.8{\times}10^4$, respectively. As the reduced frequency of K=0.1 is fixed, the corresponding frequency of an airfoil was adjusted in each case. The results reveal that the point at which the shear stress in an unsteady boundary layer separation disappears does not correspond with the position of the breakdown of the boundary layer, and that the breakdown of the boundary layer occurs further downstream.

  • PDF

Near Time Maximum Disturbance Design for Second Order Oscillator with Model Uncertainty (모델 불확실성을 갖는 이차 오실레이터에 대한 근사화된 최대 시간 교란 신호 설계)

  • You Kwan-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.205-211
    • /
    • 2003
  • In this paper we propose a disturbance design method to test a system's stability. It is shown that the time maximum disturbance is represented in bang-bang and state feedback form. To maximize the time severity index, the value of disturbance is determined by the associated switch curve. The original switch curve is vulnerable to model uncertainties and takes much calculation time. We propose an improved method to approximate the original switch curve. This reduces the computational time and implements sufficiently to test the stable system. Simulation results show how the approximate switch curve can be used to stress a system by driving it to oscillation along the maximum limit cycle.

Modelling of Magneto-Elastic Phenomena in Inductive Dynamic Drive

  • Jankowski, Piotr
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1073-1081
    • /
    • 2017
  • Inductive dynamic drives (IDD) are ultra rapid actuators where the moving part (disc) is subjected to impulse force. This paper presents the second model of inductive dynamic drive - a mechanical model where analytic- numerical approach was applied. The magnetic pressure, which was determined on the basis of the results obtained in the electrodynamic model, becomes the input data for mechanical model. Research with application of the mechanical model is necessary in order to determine the proper disc oscillation frequency and to obtain the stress state control for drive elements to be designed. Also, the selection of drive parameters to keep the disc deformation insignificant (while oscillating) is a condition under which these models do not need to be coupled together.

Reactive Current Assignment and Control for DFIG Based Wind Turbines during Grid Voltage Sag and Swell Conditions

  • Xu, Hailiang;Ma, Xiaojun;Sun, Dan
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.235-245
    • /
    • 2015
  • This paper proposes a reactive current assignment and control strategy for a doubly-fed induction generator (DFIG) based wind-turbine generation system under generic grid voltage sag or swell conditions. The system's active and reactive power constrains during grid faults are investigated with both the grid- and rotor-side convertors (GSC and RSC) maximum ampere limits considered. To meet the latest grid codes, especially the low- and high-voltage ride-through (LVRT and HVRT) requirements, an adaptive reactive current control scheme is investigated. In addition, a torque-oscillation suppression technique is designed to reduce the mechanism stress on turbine systems caused by intensive voltage variations. Simulation and experiment studies demonstrate the feasibility and effectiveness of the proposed control scheme to enhance the fault ride-through (FRT) capability of DFIG-based wind turbines during violent changes in grid voltage.

Frequency-Distance Responses in SECM-EQCM: A Novel Method for Calibration of the Tip-Sample Distance$\S$

  • 신명선;전일철
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1227-1232
    • /
    • 1998
  • The frequency response on the tip-sample distance in scanning electrochemical microscopy (SECM) that is combined with an electrochemical quartz crystal microbalance (EQCM) is described. The oscillation frequency of the EQCM increases rapidly when the SECM tip is very close to the substrate electrode surface. This frequency increase is reproducible regardless of the current feedback in SECM, which is attributed to the stress caused by the tip pressing the quartz crystal. It is useful to calibrate the tip-sample distance with respect to the frequency change when a combined system of SECM and EQCM (SECM-EQCM) is used. This method could be applied to several cases such as rigid metal electrode and non-conducting or partially conducting polymer coating prepared on the quartz crystal regardless of the feedback current.

Effect of lock-on frequency on vortex shedding in the cylinder wake

  • Yoo Jung Yul;Sung Jaeyong;Kim Wontae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.86-99
    • /
    • 2001
  • Vortex lock-on or resonance in the flow behind a circular cylinder is investigated from a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K\acute{a}rm\acute{a}n$ and streamwise vortices in the wake-transition regime at the Reynolds number 360. Streamwise vortices at the lock-on and natural shedding states are observed, as well as the changes in the wake region with the change of the shedding frequency of lock-on state. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. At the lock-on state, the $K\acute{a}rm\acute{a}n$ vortices are observed to be more disordered by the increased strength and spanwise wavelength of the streamwise vortices, which leads to a strong three-dimensional motion. Recirculation and vortex formation region at the lock-on state is reduced as the oscillating frequency is increased. By comparing the Reynolds stresses at the lock-on and natural shedding states, $\bar{u'u'}\;and \;\bar{u'u'}$ at the lock-on state are concentrated on the shear layer around the cylinder. The $\bar{u'u'}\;at\;f_o/f_n=2.0$ has a large value near the centerline, compared with that of other cases. Considering the traces of maximum of u', in the wake region near the cylinder, wake width at the lock-on state is wider than that at the natural shedding state.

  • PDF

A Study on the Optimal Design Method of Reinforced Concrete Two Way Slabs (Direct Method에 의한 鐵筋콘크리트 二方向슬라브의 最適設計에 관한 硏究)

  • Kim, Yong-Hee;Lyu, Hong-Leal;Park, Moon-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.97-105
    • /
    • 1984
  • We have, at present, found some studies on the optimum design of reinforced concrete about the simple slab but very few about the multi-story and multi-span slab. The aim of this study is to make a optimum design of coalesced beam and column slab constructure. Some results of the evaluation by using the optimalized algorithm that was developed in this study are as follows. 1. Slab was mainly restricted by the constraint of effective depth, bending moment, and minimum steel ratio; especially the effective depth was the preceding crifical constraint. In the optimum design of slab, therefore, the constraint about the minimum thickness should be surely considered. 2. This optimum design is good economy as much as some 3.4&~6.2% compared with the conventional design method. 3. In most case, it was converged by 3 to 6 iteratin regardless of the highest or lowest value and only in case of N=1 and case 1, there is a little oscillation after the 3rd iteration but it makes no difference in taking either the highest or lowest value because the range of oscillation is low as much as about 1.2% of the total construction cost. 4. In this study the result seeking for constraints that make no difference in the least cost design shows that shear stress and maximum steel ration may not be considered in it. 5. Bending moment was converged by one time iteration regardless of the initial value, while steel ratio, in most case, by two times because both bending moment and steel ratio are the fuction of effective depth.

  • PDF

EFFECT OF PATIENT'S BREATHING PATTERN ON THE STRESS CHANGES IN THIRD MOLAR EXTRACTION (제 3 대구치 발치시 환자의 호흡 패턴이 스트레스 변화 양상에 미치는 영향)

  • Rhee, Sang-Myung;Kim, Hyung-Wook;Park, Yang-Ho;Kim, Jin-Cheol;Park, Jun-Woo;Rhee, Sung-Jun;Nyamdorj, Selenge;Ahn, Jae-Mok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.485-493
    • /
    • 2007
  • Purpose: Heart rate variability(HRV) is the clinical consequence of various influences of the autonomic nervous system(ANS) on heart beat. HRV can estimate the potential physiologic rhythm from the interval between consecutive beats(RR interval or HRV data). It is known as RSA which represents respiration-related HR rhythmic oscillation. Previous studies demonstrated a specific breathing pattern(0.1Hz, 6breaths/min) to improve a physiological body condition related to the stress. In this paper, the level of stress would be evaluated in terms of three phases of the dental treatment, combined with 6breaths/min. Methods: These phases include before, during and after tooth extraction or anesthesia or something.36 patients' stresses were assessed using HRV stress analyzer in each phase in Kangdong Sacred Heart Hospital, and Chuncheon Sacred Heart Hospital, Hallym University Medical Center from Jun. to Sept. of 2007. HRV 5-min data collected were analyzed in time-domain and frequency-domain to evaluate the activity of autonomic nervous system(ANS) which represents the level of stress. Results: All HRV parameters including HF(high frequency), LF(low frequency) and LF/HF ratio showned a significant change affecting the ANS balance. There was a 6.4% difference between R(LF/HF)s on general breathing pattern for balance of Autonomic nervous system, but on controlled breathing pattern, 0.1Hz, was made narrow till 1.4%. The activity of ANS has increased by 1.4% on general breathing pattern, and by 2.9% on controlled breathing pattern, 0.1Hz. Conclusion: After analysis of preoperative stress changes and effect of breathing pattern of 0.1 Hz on the stress in 36 patients who have undergone third molar extraction, following was concluded. In the preoperative stage, the sympathetic change was the greatest?after the?anesthetic injection, and stress was relieved by controlling the breathing pattern to a frequency of 0.1Hz.

Stress characteristics of multilayer polysilicon for the fabrication of micro resonators (마이크로 공진 구조체 제작을 위한 다층 폴리실리콘의 스트레스 특성)

  • Choi, C.A.;Lee, C.S.;Jang, W.I.;Hong, Y.S.;Lee, J.H.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • Micro polysilicon actuators, which are widely used in the field of MEMS (Microelectromechanical System) technology, were fabricated using polysilicon thin layers. Polysilicon deposition were carried out to have symmetrical layer structures with a LPCVD (Low Pressure Chemical Vapor Deposition) system, and we have measured physical characteristics by micro test patterns, such as bridges and cantilevers to verify minimal mechanical stress and stress gradient in the polysilicon layers according to the methods of mutilayer deposition, doping, and thermal treatment, also, analyzed the properties of each specimen, which have a different process condition, by XRD, and SIMS etc.. Finally, the fabricated planar polysilicon resonator, symmetrically stacked to $6.5{\mu}m$ thickness, showed Q of 1270 and oscillation ampitude of $5{\mu}m$ under DC 15V, AC 0.05V, and 1000 mtorr pressure. The developed micro polysilicon resonator can be utilized to micro gyroscope and accelerometer sensor.

  • PDF

Numerical Studies of Flow Across End-to-Side Distal Vascular Bypass Graft Anastomoses

  • Kim, Y.H.;Kim, J.H.;Shin, J.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.339-352
    • /
    • 1992
  • A numerical simulation of the steady and pulsatile flow across the end-to-side anastomosis was performed In order to understand the role of flow dynamics in the preferential bevel opment of distal anastomotic intimal hyperplasla. The finite element technique was employed to solve two-dimensional unsteady pulsatile flow in that region. The results of the steady flow revealed that low shear stresses occur at the proximally occluded host artery and at the recirculation region in the Inner wall just distal to the toe region of the anastomosis. The nor- mal;zed wall shear rate was increased, as was the recirculation zone size in the host artery of the by-pass graft anastomosis, with increased anastomotic junction angle. In order to min imize the size of the low wall shear region which might result in the intimal hyperplasia in the by-pass graft anastomosis, a smaller anastomotic junction angle is recommended. The pulsatile flow simulation revealed flow that regions of low and ascillating mali shear do exist near the anastomosis as In the steady simulation. The shift of stagnation point depends on the pulsation of the flow. As the flow was accelerated at systole, the stagnation point moved downstream, disappered at early diastole and reappeared during late diastole. Low shear stress was also found along both walls of the occluded proximal artery. However, the diastolic flow behavior is quite different from the steady results. The vortex near the occluded artery moved downstream and inwardly during late systole, and disappeared during diastole. Recirculations proximal to the toe and heel regions were significant during diastole. Shear stress oscillation was found along the opposite wall. The results of the present study revealed that tow shear occurs at the proximally occluded host artery aud the recirculation region in the inner wall Just dlstal to the toe region of the anastomosis. The present study suggested that the regions of fluctuated wall shear stress wit flow separation is correlated with the preferential developing regions of anastomosis neointial fibrous hyperplasia.

  • PDF