• 제목/요약/키워드: Stress intensity

검색결과 2,000건 처리시간 0.022초

터빈축차내에 내재된 타원균열의 응력세기계수 결정 (Determination of Stress Intensity Factors for Embedded Elliptical Crack in Turbine Rotor)

  • 이강용;김종성;하정수
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1229-1242
    • /
    • 1995
  • The thermal shock stress intensity factors of semi-elliptical surface crack in finite plate and the stress intensity fractors of embedded elliptical crack in turbine rotor is determined by means of Vainshtok weight function method. In case of semi-elliptical surface crack, the solution is compared with previous solution. The stress intensity factor for embedded elliptical crack in turbine rotor loaded by centrifugal and thermal loading is also determined. In this case, the value of stress intensity factor is larger at crack contour near internal radius surface and is almost constant at the crack contour farther from internal radius surface.

A FINITE ELEMENT METHOD USING SIF FOR CORNER SINGULARITIES WITH AN NEUMANN BOUNDARY CONDITION

  • Kim, Seokchan;Woo, Gyungsoo
    • East Asian mathematical journal
    • /
    • 제33권1호
    • /
    • pp.1-9
    • /
    • 2017
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.

경계요소법을 이용한 접합재료 경계면의 직선균열형상의 강체 함유물에 대한 응력세기계수 결정 (Determination of Stress Intensity Factors for Bimaterial Interface Rigid Line Inclusions by Boundary Element Method)

  • 이강용;곽성규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.176-181
    • /
    • 2000
  • Stress intensity factors for a rigid line inclusion tying along a bimaterial interface are calculated by the boundary element method with the multiregion and double-Point techniques. The formula between the stress intensity factors and the inclusion surface stresses are derived. The numerical values of the stress intensity factors for the bimaterial interface rigid line inclusion in the infinite body are proved to be in good agreement within 3% when compared with the previous exact solutions. In the finite bimaterial systems, the stress intensity factors for the center and edge rigid line inclusions at interface are computed with the variation of the rigid line inclusion length and the shear modulus ratio under the biaxial and uniaxial loading conditions.

  • PDF

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.

스트레인게이지법을 이용한 동적응력확대계수 평가 (Evaluation on dynamic stress intensity factor using strain gage method)

  • 이현철;김덕희;김재훈;문순일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.304-309
    • /
    • 2000
  • Strain gage method is used to evaluate the mode I dynamic stress intensity factor of marging steel(18Ni) and titanium alloy(Ti-6A1-4V). To decide the best strain gage position on specimen, static fracture toughness test was performed. Then instrumented charpy impact test and dynamic tensile test was performed by using strain gage method for evlauating dynamic stress intensity factor. Strain gage signals on the crack tip region are used to calculate the stress intensity factors. It is found that strain gage method is more useful than method by using load which is obtained from impact tup to assess dynamic characteristics such as dynamic stress intensity factor.

  • PDF

핀으로 연결된 결합부분의 표면에 위치한 균열의 응력확대계수 계산 (The Computation of Stress Intensity Factor of the Crack on the Surface of the Pin Joint)

  • 정동수;이기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.921-927
    • /
    • 1996
  • The purpose of this study is to compute the stress intensity factors of various conditions in the cracked p! ate. The stress intensity factor of pin-loaded cracked plate is investigated using the finite element method. This paper is divided into the two parts. The first part is the contact analysis, and the second is to compute the stress intensity factors. In the contact analysis, the iterative method is used, and convergence of this method is presented. In the computation of the stress intensity factors of plate, the length of crack, clearance, and angle are considered

  • PDF

5083-0 알루미늄合金의 疲勞균열進展 擧動과 균열닫힘에 관한 硏究 (A study of Fatigue Crack Growth Behavior and Crack Closure in 5083-O Aluminum Alloy)

  • 박영조;김정규;김일현
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.208-214
    • /
    • 1986
  • 본 연구에서는 균열 닫힘에 관한 연구의 일환으로 5083-O 알루미늄합금을 사용하고 소규모강복조건하에서 일정진폭하중피로시험을 시행하여 이 재료의 피로균열 진전속도와 균열닫힘에 관하여 검토하였다.

유한두께를 가지는 보강된 균열평판에 대한 면외굽힘을 고려한 응력강도계수 계산 (Calculation of stress intensity factor considering out-of-plane bending for a patched crack with finite thickness)

  • 김종호;이순복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.165-169
    • /
    • 2000
  • A simple method was suggested to calculate the stress intensity factor for a one-sided patched crack with finite thickness. To consider out-of-plane bending effect resulting from the load-path eccentricity, the spring constant as a function of the through-thickness coordinate z was calculated from the stress distribution in the un-cracked plate, ${\sigma}_{yy}(y=0,\;z)$, and the displacement for the representative single strip Joint, $u_y(y=0,\;z)$. The stress Intensity factors were obtained using Rose's asymptotic solution approach and compared with the finite element results. In short crack region, two results had a little difference. However, two results were almost same in long crack region. On the other hand, the stress intensity factor using plane stress assumption was more similar to finite element result than plane strain condition.

  • PDF

커스프 균열에 대한 열응력세기 계수의 경계요소해석 (Bounary Element Analysis of Thermal Stress Intensity Factors for Cusp Cracks)

  • 이강용;조윤호
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.119-129
    • /
    • 1990
  • 본 연구에서는 선적분화 된 체적력항을 갖는 경계요소법을 이용하여, Griffi- th균열에 대한 열응력세기계수를 구하여 Sumi의 결과와 비교 검토하고, 유무한체내의 대칭 입술형및 대칭 익형 커스프균열들(symmetric lip and airfoil cusp cracks)의 열 응력세기계수를 균열묘면이 단열된 경우와 일정 온도로 유지된 경우에 대해 계산하고 자 한다.

커스프형 강체함유물 상의 접합경계면 균열에 대한 열응력세기계수 (Thermal stress Intensity Factors for the Interfacial Crack on a Cusp-Type Inclusion)

  • 이강용;장용훈
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1255-1265
    • /
    • 1992
  • 본 연구에서는 단열 및 온도가 영으로 고정된 경계조건을 갖는 대칭 입술형과 대칭 익형 강체함유 물상의 접합경계면 균열에 대한 Hilbert 문제로부터 복소 포텐셜 함수와 커스프 균열선단 그리고 접합경계면 균열선단에서 TSIF를 구하고자 한다.