• Title/Summary/Keyword: Stress indices

Search Result 340, Processing Time 0.024 seconds

Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load (전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링)

  • Kim, Jun Soo;Kim, Seong Jong;Lee, Hyuk;Ha, Sung Kyu;Lee, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1547-1557
    • /
    • 2013
  • A forced vibration model of a rail system was established using the Timoshenko beam theory to determine the dynamic response of a rail under time-varying load considering the damping effect and stiffness of the elastic foundation. By using a Fourier series and a numerical method, the critical velocity and dynamic response of the rail were obtained. The forced vibration model was verified by using FEM and Euler beam theory. The permanent deformation of the rail was predicted based on the forced vibration model. The permanent deformation and wear were observed through the experiment. Parametric studies were then conducted to investigate the effect of five design factors, i.e., rail cross-section shape, rail material density, rail material stiffness, containment stiffness, and damping coefficient between rail and containment, on four performance indices of the rail, i.e., critical velocity, maximum deflection, maximum longitudinal stress, and maximum shear stress.

Prepartum body condition score affects milk yield, lipid metabolism, and oxidation status of Holstein cows

  • Zhao, Wei;Chen, Xue;Xiao, Jun;Chen, Xiao Hui;Zhang, Xue Feng;Wang, Tao;Zhen, Yu Guo;Qin, Gui Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1889-1896
    • /
    • 2019
  • Objective: This study aimed to investigate the effects of prepartum body condition score (BCS) on the milk yield, lipid metabolism, and oxidative status of Holstein cows. Methods: A total of 112 multiparous Holstein cows were divided into 4 groups according to the BCS at 21 days before calving: medium BCS (3.0 to 3.25, MBCS), high BCS (3.5 to 3.75, HBCS), higher BCS (4.0 to 4.25, HerBCS), and highest BCS (4.5 to 5.0, HestBCS). Blood samples were collected on 21, 14, and 7 days before calving (precalving), on the calving day (calving), and on 7, 14, and 21 days after calving (postcalving). The indices of lipid metabolism and oxidative status were analyzed using bovine-specific enzyme-linked immunosorbent assay kit. Colostrum were taken after calving and analyzed by a refractometer and milk analyzer. The individual milk yield was recorded every 3 days. Results: The density and levels of immune globulin and lactoprotein of colostrum from Holstein cows in the HestBCS group were the highest (p<0.05). These animals not only had the highest (p<0.05) levels of serum non-esterified fatty acids and beta-hydroxybutyrate, but also had the highest (p<0.05) levels of malondialdehyde, superoxide dismutase, catalase, vitamin A, and vitamin E. In addition, greater (p<0.05) BCS loss was observed in the HestBCS cows. Conclusion: This study demonstrates that the milk yield, lipid metabolism, and oxidative status of Holstein cows are related to prepartum BCS and BCS loss during the transition period. HestBCS cows are more sensitive to oxidative stress and suffer greater loss of BCS after calving, whereas the MBCS animals had better milk yield performance.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Stress-strain Behavior of Remolded Clay Using Different Shear Rate and Plastic Indices (전단속도와 소성지수를 달리한 재생성 점성토의 응력-변형률 거동)

  • Lee, Yonghee;Kang, Kwon-Soo;Jung, Sang-Guk;Kang, Jintae;Kim, Daehyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • In general, the shear strength of a clay specimen under the direct shear test and the triaxial compression test increases with an increase in the shear rate. This study investigates the effects of shear rate and silt content on the stress-strain behavior of remolded Gwangyang clay, by changing the shear rate and the silt content. Based on the results of the triaxial compression tests, the equi-strain line of remolded Gwangyang clay shows initially positive slope and then becomes flat at certain strain level. As the strain level where the equistrain becomes flat is different depending on the soil with different silt contents, this can be considered as the inherent property of soil.

Marine phytoplankton improves recovery and sustains immune function in humans and lowers proinflammatory immunoregulatory cytokines in a rat model

  • Sharp, Matthew;Wilson, Jacob;Stefan, Matthew;Gheith, Raad;Lowery, Ryan;Ottinger, Charlie;Reber, Dallen;Orhan, Cemal;Sahin, Nurhan;Tuzcu, Mehmet;Durkee, Shane;Saiyed, Zainulabedin;Sahin, Kazim
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.1
    • /
    • pp.42-55
    • /
    • 2021
  • [Purpose] This study investigated the effects of marine phytoplankton supplementation (Oceanix®, Tetraselmis chuii) on 1) maximal isometric strength and immune function in healthy humans following a oneweek high-intensity resistance-training program and 2) the proinflammatory cytokine response to exercise in a rat model. [Methods] In the human trial, 22 healthy male and female participants were randomly divided into marine phytoplankton and placebo groups. Following baseline testing, participants underwent a 14-day supplement loading phase before completing five consecutive days of intense resistance training. In the rat model, rats were randomly divided into four groups (n=7 per condition): (i) control, (ii) exercise, (iii) exercise + marine phytoplankton (2.55 mg/kg/day), or (iv) exercise + marine phytoplankton (5.1 mg/kg/day). Rats in the exercising groups performed treadmill exercise 5 days per week for 6 weeks. [Results] In the human model, marine phytoplankton prevented significant declines in the isometric peak rate of force development compared to placebo. Additionally, salivary immunoglobulin A concentration was significantly lower following the resistance training protocol in the placebo group but not in the marine phytoplankton group. Marine phytoplankton in exercising rats decreased intramuscular levels and serum concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) and intramuscular concentrations of malondialdehyde. [Conclusion] Marine phytoplankton prevented decrements in indices of functional exercise recovery and immune function. Mechanistically, these outcomes could be prompted by modulating the oxidative stress and proinflammatory cytokine response to exercise.

Surface Fracture Behaviors of Unidirectional and Cross Ply Glass Fiber/Epoxy Lamina-Coated Glass Plates under a Small-Diameter Steel Ball Impact (일방향 및 직교형 유리섬유/에폭시 복합재로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동)

  • Chang, Jae-Young;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.33-40
    • /
    • 2009
  • Fiber orientation effects on the impact surface fracture of the glass plates coated with the glass fiber/epoxy lamina layer were investigated using a small-diameter steel-ball impact experiment. Four kinds of materials were used: soda-lime glass plates, unidirectional glass fiber/epoxy layer(one ply, two plies)-coated, crossed glass tiber/epoxy layer (two plies)-coated glass plates. The maximum stress and absorbed fracture energy were measured on the back surface of glass plates during the impact. With increasing impact velocity, various surface cracks such as ring, cone, radial and lateral cracks appeared near the impacted site of glass plates. Cracks in the plate drastically diminished by glass fiber coating. The tiber orientation guided the directions of delamination and plastic deformation zones between the tiber layer and the glass plate. Impact surface-fracture indices expressed in terms of the maximum stress and absorbed energy could be used as an effective evaluation parameter of the surface resistance.

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

The Assessment of Photochemical Index of Nursery Seedlings of Cucumber and Tomato under Drought Stress (건조스트레스에 의한 오이와 토마토 공정육묘의 광화학적 지표 해석)

  • Ham, Hyun Don;Kim, Tae Seong;Lee, Mi Hyun;Park, Ki Bae;An, Jae-Ho;Kang, Dong Hyeon;Kim, Tae Wan
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.479-487
    • /
    • 2018
  • The purpose of this study is to analyze photochemical activity of nursery seedlings under drought stress, using chlorophyll fluorescence reaction analysis. Young nursery seedlings of tomato (Lycopersicon esculentum Mill.) and cucumber (Cucumis sativa L.), were grown under drought stress for 8 days. Analysis of chlorophyll fluorescence reaction (OJIP) and parameters, were performed to evaluate photochemical fluctuation in nursery seedlings under drought stress. Chlorophyll fluorescence reaction analysis showed maximal recorded fluorescence (P) decreased from the 5 day after treatment in tomato seedlings, while an amount of chlorophyll fluorescence increased at the J-I step. Thus, physiological activity was reduced. In cucumber seedlings, maximal recorded fluorescence (P) and maximal variable fluorescence ($F_V$) lowered from the 4 day after treatment, and chlorophyll fluorescence intensity of J-I step increased. Chlorophyll fluorescence parameter analysis showed electron transfer efficiency of PSII and PSI were significantly inhibited with decreasing $ET2_O/RC$ and $RE1_O/RC$ from the 5 day after treatment, in tomato seedlings and from the 4 day after treatment, in cucumber seedlings. $ET2_O/RC$ and $PI_{ABS}$ significantly changed. In conclusion, 6 indices such as $F_V/F_M$, $DI_O/RC$, $ET2_O/RC$, $RE1_O/RC$, $PI_{ABS}$ and $PI_{TOTAL}ABS$ were selected for determining drought stress in nursery seedlings. Drought stress factor index (DFI) was used to evaluate whether the crop was healthy or not, under drought stress. Cucumber seedlings were less resistant to drought stress than tomato seedlings, in the process of drought stress.

A POSTERIORI ERROR ESTIMATOR FOR HIERARCHICAL MODELS FOR ELASTIC BODIES WITH THIN DOMAIN

  • Cho, Jin-Rae;J. Tinsley Oden
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.16-33
    • /
    • 2002
  • A concept of hierarchical modeling, the newest modeling technology. has been introduced early In 1990. This nu technology has a goat potential to advance the capabilities of current computational mechanics. A first step to Implement this concept is to construct hierarchical models, a family of mathematical models which are sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics In their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-. plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical analysis of hierarchical models, two kinds of errors prevail: the modeling error and the numerical approximation errors. To ensure numerical simulation quality, an accurate estimation of these two errors Is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures Is derived using element residuals and flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error Indicators for two types of errors, in the energy norm. Comparing to the classical error estimators using flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

  • PDF

A Structural Equation Modeling on Premenstrual Syndrome in Adolescent Girls (청소년기 여학생의 월경전증후군 구조모형)

  • Jeon, Jung-Hee;Hwang, Sun-Kyung
    • Journal of Korean Academy of Nursing
    • /
    • v.44 no.6
    • /
    • pp.660-671
    • /
    • 2014
  • Purpose: The aims of this study were to construct a hypothetical structural model which explains the premenstrual syndrome (PMS) in adolescent girls and to test the fitness with collected data. Methods: The participants were 1,087 adolescent girls from 3 high schools and 5 middle schools in B city. Data were collected from July 3 to October 15, 2012 using self-reported questionnaires and were analyzed using PASW 18.0 and AMOS 16.0 programs. Results: The overall fitness indices of hypothetical model were good (${\chi}^2$ =1555, p<.001), ${\chi}^2$/df=4.40, SRMR=.04, GFI=.91, RMSEA=.05, NFI=.90, TLI=.91, CFI=.92, AIC=1717). Out of 16 paths, 12 were statistically significant. Daily hassles had the greatest impact on PMS in the adolescent girls in this model. In addition, PMS in adolescent girls was directly affected by menarche age, Body Mass Index (BMI), amount of menstruation, test anxiety, social support, menstrual attitude and femininity but not by academic stress. This model explained 27% of the variance in PMS in adolescent girls. Conclusion: The findings from this study suggest that nursing interventions to reduce PMS in adolescent girls should address their daily hassles, test anxiety, menstrual attitude and BMI. Also, social support from their parents, friends, and teachers needs to be increased.