• 제목/요약/키워드: Stress and strain variation

검색결과 278건 처리시간 0.032초

댐 거동 분석에서의 Strain Gauge를 이용한 단일 계측에 관한 연구 (The Study on the Simple Measurement by Using the Strain Gauge at Dam Dynamic Behavior Analysis)

  • 이승호
    • 한국지반환경공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.5-11
    • /
    • 2007
  • 담수시 저수되는 수압에 의해 face slab con'c 내부의 응력변화가 발생하여 댐 제체의 안정성에 영향을 미칠 가능성이 있으므로 face slab con'c의 내부 응력변화를 측정하기 위하여 매립형 strain gauge가 많이 적용되고 있다. 따라서 본 연구에서는 ${\circ}{\circ}$댐에 적용된 strain gauge를 이용하여 댐 제체 내 외부 변형을 측정하였다. 그 결과 댐의 안정성 분석과 전체적인 경향을 파악함에 있어서 strain gauge의 계측 값만으로는 한계가 있으므로 관련 계기의 측정값을 함께 검토해야 할 것으로 사료된다.

  • PDF

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • 제11권2호
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.

차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (I) - 온도에 따른 동적 물성 특성 - (Dynamic Constitutive Equations of Auto-Body Steel Sheets with the Variation of Temperature (I) - Dynamic Material Characteristics with the Variation of Temperature -)

  • 이희종;송정한;박성호;허훈
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.174-181
    • /
    • 2007
  • This paper is concerned with the thermo-mechanical behavior of steel sheet for an auto-body including temperature dependent strain rate sensitivity. In order to identify the temperature-dependent strain rate sensitivity of SPRC35R, SPRC45E and TRIP60, uniaxial tensile tests are performed with the variation of the strain rates from 0.001/sec to 200/sec and the variation of environmental temperatures from $-40^{\circ}C$ to $200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained from the static tensile test and that at the intermediate strain rate is obtained from the high speed tensile test. Experimental results show that the variation of the flow stress and fracture elongation becomes sensitive to the temperature as the strain rate increases. It is observed that the dynamic strain aging occurs with TRIP60 at the temperature above $150^{\circ}C$. Results also indicate that the flow stress and tincture elongation of SPRC35R are more dependent on the changes of strain rates and temperature than those of SPRC45E and TRIP60.

일정변형률(CRS) 시험에서의 압밀특성 (Consolidation Characteristics at the Constant Rate of Strain(CRS) Test)

  • 이달원;김시중
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.491-499
    • /
    • 2010
  • This study was carried out to investigate the consolidation characteristics of the remolded clay by the oedometer and the constant rate of strain(CRS) consolidation tests. As the rate of strain increases, the settlement rapidly decreased. As the ratio of the sand in the specimen increases, its effect on the rate of strain to the settlement was reduced. As the effective stress increased, the void ratio decreased, while the rate of strain increased, it did not show a clear variation. The reduction of the void ratio was shown to be less than the oedometer test. The coefficient of vertical consolidation with effective stress showed very large variation around preconsolidation stress, but the rate of strain did not provide significant effects. The rate of strain with effective stress gradually decreased at all tests and mixed ratio of sand. The rate of strain at the constant rate of strain tests showed smaller than in the oedometer test. The coefficient of consolidation at the constant rate of strain tests showed much more increase than in the oedometer test. The ratio of the vertical coefficient of consolidation by the odometer and the constant rate of strain tests showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to designing the soft ground improvement.

차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (II) - 온도에 따른 동적 구성방정식 - (Dynamic Constitutive Equations of Auto-body Steel Sheets with the Variation of Temperature (II) - Flow Stress Constitutive Equation -)

  • 이희종;송정한;박성호;허훈
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.182-189
    • /
    • 2007
  • This paper is concerned with the empirical flow stress constitutive equation of steel sheets for an auto-body with the variation of temperature and strain rate. In order to represent the strain rate and temperature dependent behavior of the flow stress at the intermediate strain rates accurately, an empirical hardening equation is suggested by modifying the well-known Khan-Huang-Liang model. The temperature and strain rate dependent sensitivity of the flow stress at the intermediate strain rate is considered in the hardening equation by coupling the strain, the strain rate and the temperature. The hardening equation suggested gives good correlation with experimental results at various intermediate strain rates and temperatures. In order to verify the effectiveness and accuracy of the suggested model quantitatively, the standard deviation of the fitted result from the experimental one is compared with those of the other two well-known empirical constitutive models such as the Johnson-Cook and the Khan-Huang-Liang models. The comparison demonstrates that the suggested model gives relatively well description of experimental results at various strain rates and temperatures.

Stress and strain analysis of functionally graded plates with circular cutout

  • Dhiraj, Vikash Singh;Jadvani, Nandit;Kalita, Kanak
    • Advances in materials Research
    • /
    • 제5권2호
    • /
    • pp.81-92
    • /
    • 2016
  • Stress concentration is an interesting and essential field of study, as it is the prime cause of failure of structural parts under static load. In the current paper, stress and strain concentration factors in unidirectional functionally graded (UDFGM) plate with central circular cutout are predicted by carrying out a finite element study on ANSYS APDL platform. The present study aims to bridge the lacuna in the understandings of stress analysis in perforated functionally graded plates. It is found that the material variation parameter is an important criterion while designing a perforated UDFGM plate. By selecting a proper material variation parameter and direction of material gradation, the stress and strain concentrations can be significantly reduced.

다양한 형태의 보강섬유 굴곡을 가지는 두꺼운 복합재료의 인장/압축 하중 하에서의 응력/변형률 분포 (Stress and Strain Distribution of Thick Composites with Various Types of Fiber Waviness under Tensile and Compressive Loadings)

  • 신재윤;이승우;전흥재
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.97-100
    • /
    • 2000
  • A FEA(finite element analysis) model was proposed to study stress and strain distributions in thick composites with various types of fiber waviness under tensile and compressive loadings. Three types of model were considered in this study: uniform fiber waviness, graded fiber waviness and localized fiber waviness models. In the analysis, both material and geometrical nonlinearities due to fiber waviness were incorporated into the model utilizing energy density and incremental method. The strain distributions of uniform fiber waviness model were strongly influenced whereas the stress distributions were little influenced by fiber waviness. The stress and strain distributions of graded and localized fiber waviness models showed more complex distributions than those of uniform fiber waviness model due to the variation of fiber waviness along the thickness and length directions. It was concluded that the stress and strain distributions of composites with fiber waviness were significantly affected by types of fiber waviness.

  • PDF

튜브 액압성형품의 가공 경화 특성 연구 (Strain Hardening Behavior in the Tube Hydroforming)

  • 박현규;임홍섭;이해경;김광순;문영훈
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.564-569
    • /
    • 2008
  • Strain hardening behavior during hydroforming has been experimentally investigated. The variation of flow stress was used as an index of strain hardening during respective processes and the flow stress was estimated from the correlationship between flow stress and effective strain. The local hardness after hydroformig was also predicted by effective strain. By using the inter-relationships between hardness-flow stress-effective strain at variable pre-strains, the strain hardening behavior during hydroforming has been successfully analyzed. The comparison of predicted hardness with measured hardness confirmed that the methodology used in this study was feasible and the strain hardening behavior can be quantitatively estimated.

Modified Equivalent Radius Approach in Evaluating Stress-Strain Relationship in Torsional Test

  • Bae, Yoon-Shin
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.97-103
    • /
    • 2008
  • Determination of stress-strain relationship in torsional tests is complicated due to nonuniform stress-strain variation occurring linearly with the radius in a soil specimen in torsion. The equivalent radius approach is adequate when calculating strain at low to intermediate strains, however, the approach is less accurate when performing the test at higher strain levels. The modified equivalent radius approach was developed to account for the problem more precisely. This approach was extended to generate the plots of equivalent radius ratio versus strain using modified hyperbolic and Ramberg-Osgood models. Results showed the effects of soil nonlinearity on the equivalent radius ratio curves were observed. Curve fitting was also performed to find the stress-strain relationship by fitting the theoretical torque-rotation relationship to measured torque-rotation relationship.

인장시험의 실험과 해석 결과를 이용한 임계손상도의 결정 (Determination of a critical damage by experiment and analysis of tensile test)

  • 장성민;엄재근;이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.292-296
    • /
    • 2008
  • A new method of evaluating critical damage values of commercial materials is presented in this paper. The method is based on the previous study of the methodology [1] of acquisition of true stress-strain curves or flow stress curves over large strain from the tensile test in which the flow stress is described by the Hollomon law-like form, that is, by the strain dependent strength coefficient and the strain hardening exponent. The strain hardening exponent is calculated from the true strain at the necking point to meet the Considere condition. The strength coefficient is assumed to be constant before necking and represented by a piecewise linear function of strain after necking. With the predicted flow stress, a tensile test is simulated by a rigid-plastic finite element method with higher accuracy of less than 0.5% error between experiments and predictions. The instant when the fracture begins and thus the critical damage is obtained is determined by observing the stress variation at the necked region. It is assumed that the fracture due to damage begins when the pattern of stress around the necked region changes radically. The method is applied to evaluate the critical damage of a low carbon steel.

  • PDF