• 제목/요약/키워드: Stress amplification

검색결과 84건 처리시간 0.025초

Multiplication of Displacements of the Langevin Type Piezoelectric Transducer using Various Shapes of Horns

  • Park, Tae-Gone;Kim, Myong-Ho;Park, Min-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권2호
    • /
    • pp.61-65
    • /
    • 2004
  • Bolt-tightened Langevin type vibrators using longitudinal mode of bar were designed and fabricated. In order to amplify the displacement of the tip of the vibrators, stacked ceramics were used and five different shapes of the horns were designed and jointed. Resonant frequencies and vibration characteristics of vibrators and horns were analyzed by ANSYS(finite element analysis computer program), and the displacements of tips of the horns were measured. As results, when the numbers of the stacked ceramics were increased, the displacements of the tips were increased and the driving voltages were decreased. Step l horn (BLT-St1) showed maximum displacement of 36.92 $\mu\textrm{m}$ at 36.7 ㎑ with 45 V$\sub$rms/ and 0.11 A. The displacement amplification ratio was about 5.2. But, the stress of step l horn was concentrated on intersection, where two diameters meet. To lessen the stress, step3 shaped hem is recommended.

탄소성 변형률 기반 내진성능 평가 절차서 개발 방안 (A Plan to Develop Seismic Capacity Verification Procedures Based on the Elastic-Plastic Strain Features)

  • 황종근;정일석;김범식;안상원;방혜진;이민희;정현섭
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.11-15
    • /
    • 2018
  • A development plan for seismic capacity verification procedures of nuclear components based on the elastic-plastic strain (EPS) features is explained in this paper. The EPS methodology is more realistic to assess seismic responses of components to extreme seismic events beyond the safe shutdown earthquake (SSE) than current practices with the criteria of stress limits. The EPS based approach to analyze the seismic capacity of components can reduce over-conservatism in the current stress-based criteria and can incorporate the seismic responses of components deformed in plastic behavior by the motion of extreme earthquake.

수평방향 변위증폭을 위해 U-형상의 PZT 스트립과 지렛대 구조를 이용한 압전구동형 액추에이터의 설계, 제작 및 실험 (Design, Fabrication and Test of Piezoelectric Actuator Using U-Shape PZT Strips and Lever Structure for Lateral Stroke Amplification)

  • 이준형;이택민;최두선;황경현;서영호
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1937-1941
    • /
    • 2004
  • We present lateral actuated piezoelectric actuator using U-shaped PZT strip and lever structure for the RF switch application. In the previous study of RF switch, they used horizontal contact switch fabricated by thin film metals. However, thin film metals could not generate large contact force due to low stiffness. In this work, we suggest lateral contact switch which makes large contact force by increasing stiffness. In addition, we use PZT actuator for the high force actuation. Generally actuator using thin film PZT moves to the vertical direction due to the neutral axis shift. Therefore we need lateral motion generation mechanism based on the thin film PZT actuator. In order to increase lateral motion of thin film PZT actuator, we use U-shaped PZT actuator using residual stress control. Also, thin film PZT actuator can generate very small lateral motion of 120${\times}$10$^{-6}$ ${\mu}{\textrm}{m}$/V for d$_{31}$ mode, thus we suggest lever structure to increase stroke amplification. From the experimental study, fabricated PZT actuator shows maximum lateral displacement of 1 ${\mu}{\textrm}{m}$, and break down voltage of the thin film PZT actuator is above 16V.

3D 프린터를 사용한 정밀 스테이지의 제작 (Fabrication of Piezo-Driven Micropositioning Stage using 3D printer)

  • 정호제;김정현
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.277-283
    • /
    • 2014
  • This paper presents the design, optimization and fabrication of a piezo driven micro-positioning stage constructed using a 3D-printer. 3D printing technology provides many advantageous aspects in comparison to traditional manufacturing techniques allowing more rapid prototyping freedom in design, etc. Micro-positioning stages have traditionally been made using metal materials namely aluminum. This paper investigates the possibility of fabricating stages using ABS material with a 3D printer. CAE simulations show that equivalent motion amplification can be achieved compared to a traditional aluminum fabricated stage while the maximum stress is 30 times less. This leads to the possibility of stages with higher magnification factors and less load on the driving piezo element. Experiment results agree with the simulation results. A micro-position stage was fabricated using a 3D printer with ABS material. The motion amplification is very linear and 50 nm stepping was demonstrated.

유한차분법을 이용한 3차원 지진파 전파 모의 (Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method)

  • 강태섭
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

란쥬반형 진동자의 형상에 따른 진동특성 변화 (Changes of Vibrational characteristics due to the spaces of the Langevin type vibrators)

  • 박민호;정동석;박태곤;권오영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.97-102
    • /
    • 2002
  • Bolt-tightened Langevin type vibrators using longitudinal mode of bar were designed and fabricated. In order to amplify the displacement of the tip of the vibrators, stacked ceramics were used and five different shapes of the horns were designed and fabricated. Resonant frequencies and vibrational characteristics of vibrators and horns were analyzed by ANSYS(finite element analysis computer program), and the displacements of tips of the horns were measured. As results, when the number of the stacked ceramics were increased, the displacements of the tips were increased and the driving voltages were decreased. Step1 horn(BLT-Stl) showed maximum displacement of 36.92[${\mu}m$] at 36.7[kHz] with 45[Vrms] and 0.11[A]. The displacement amplification ratio was about 5.2. But, the stress of step1 horn was concentrated on intersection, where two diameters meet. To lessen the stress, step3 shaped horn is recommended.

  • PDF

Finite element analysis of ratcheting on beam under bending-bending loading conditions

  • Sk. Tahmid Muhatashin Fuyad;Md Abdullah Al Bari;Md. Makfidunnabi;H.M. Zulqar Nain;Mehmet Emin Ozdemir;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.23-31
    • /
    • 2024
  • Ratcheting is the cyclic buildup of inelastic strain on a structure resulting from a combination of primary and secondary cyclic stress. It can lead to excessive plastic deformation, incremental collapse, or fatigue. Ratcheting has been numerically investigated on a cantilever beam, considering the current study's primary and secondary bending loads. In addition, the effect of input frequency on the onset of ratcheting has been investigated. The non-linear dynamic elastic-plastic approach has been utilized. Analogous to Yamashita's bending-bending ratchet diagram, a non-dimensional ratchet diagram with a frequency effect is proposed. The result presents that the secondary stress values fall sequentially with the increase of primary stress values. Moreover, a displacement amplification factor graph is also established to explain the effect of frequency on ratchet occurrence conditions. In terms of frequency effect, it has been observed that the lower frequency (0.25 times the natural frequency) was more detrimental for ratchet occurrence conditions than the higher frequency (2 times the natural frequency) due to the effect of dynamic displacement. Finally, the effect of material modeling of ratcheting behavior on a beam is shown using different hardening coefficients of kinematic hardening material modeling.

국내 강철도 교량의 충격계수 및 응력빈도분포의 평가 (Assessment of the Impact Factor and the Stress Histogram of Railway Bridges in Korea)

  • 최준혁;조선규;장동일
    • 한국강구조학회 논문집
    • /
    • 제9권4호통권33호
    • /
    • pp.489-500
    • /
    • 1997
  • 현재 국내에서 공용되고 있는 철도 교량은 약 3,000여개이며, 그 가운데 강교량이 차지하는 비율은 47% 정도로서 도로교에 비해 강교량이 차지하는 비율이 훨씬 높은 것을 알 수 있다. 또한, 강철도교의 장지간 교량의 대부분이 강판형과 트러스 형식을 채택하고 있으며, 이들 교량은 대부분이 30년 이상의 공용이력을 갖고 있어 각 교량에서 피로 및 부식에 의한 손상이 진행되고 있을 것으로 예상된다. 따라서 본 연구에서는 강철도교의 내하력과 내구성에 기초한 유지관리의 구축 및 이들의 데이터 베이스화를 위한 기초적인 단계로서 철도교에서의 응력빈도 특성 및 충격의 영향을 조사하는 것을 목적으로 하고 있다. 이들을 수행하기 위해 강철도 교량을 대상으로 시험차량에 의한 동적 주행시험을 통하여 충격계수를 산정하였으며, 이로부터 교량지간별, 교량형식별 그리고 차량의 주행 속도별 충격의 영향을 평가하였다. 또한, 공용하중하의 실동응력파를 획득하고 Rainflow Counting Method에 의한 빈도해석을 실시하여 응력범위 히스토그램을 산출하였으며, 트러스 형식별, 통과 열차별, 구조 부재별에 따른 응력분포 특성을 비교, 고찰하였으며, 이로부터 피로손상의 정도를 평가하였다. 그 결과, 트러스교에 있어서는 하현재와 세로보의 응력범위가 가장 큰 것으로 나타났으며 응력빈도 분포의 형태는 교량의 형식, 하중체계 그리고 통과량에 따라 크게 달라짐을 알 수 있었다. 또한 충격의 영향은 지간뿐만 아니라 차량의 주행속도에 크게 좌우됨을 알 수 있었다.

  • PDF

한반도 발생 지진의 지진원 상수 (Source parameters of earthquakes occurred in the Korean Peninsula)

  • 김성균;김병철
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.3-11
    • /
    • 2002
  • Source parameters for forty nine recent earthquakes occurred in and around Korean Peninsula are determined and the relations among them are studied. The corner frequency and seismic moment are estimated from three different methods. The spectral fitting of the source displacement spectrum with the $\omega$-square source model of Brune(1970) and Snoke(1987)'s method are applied to all events and empirical Green's function method for two events are adopted. The source parameters determined in this study show different values depending on the adopted method and on the stations of which seismograms are recorded. It is interpreted that the disagreements principally originate from insufficient consideration of source radiation pattern and attenuation and amplification according to path direction. The corner frequencies and seismic moments are averaged to exclude the directional effects and other source parameters are estimated from the mean corner frequency and seismic moment. The static stress drops estimated in this study tend to be independent of seismic moment or magnitude for events above a certain size. For earthquakes with the size less than about 3.0$\times$10$^{21}$dyne-cm(nearly same as M$_{L}$=3.7), the stress drop tends to decrease with the decreasing moment. This fact suggests a breakdown of scaling law of source parameters below the threshold magnitude. The moment magnitudes calculated from source parameters appear to be slightly larger than the Richter's local magnitudes in the range above M$_{L}$=3.5.3.5.

  • PDF

CIM 기술로 제조한 1-3 형 압전복합체의 물성 평가 (Material Properties Evaluation of 1-3 type Piezo-composite Fabricated with CIM Technology)

  • 임종인;신호용;김종호;임수진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.196-199
    • /
    • 2012
  • Generally the piezo-composites have superior hydrostatic response characteristics than PZT ceramics due to both the stress amplification effect in axial direction and stress reduction effects in radial direction. This paper described material properties of a 1-3 type piezo-composite that fabricated with ceramic injection molding (CIM) technology. The electro-mechanical performances of the composite have been analyzed using FEM and the physical properties of the composite have been measured with the vol. % of the PZT ceramics. Based on the results, the $k_t$ increased rapidly as the vol. % of the PZT ceramics increased up to 30 vol. % and saturated the constant value in the above region. Also the experimental results have good agreement with the simulation values of the composite. Finally we developed the composites having high piezoelectric properties than the PZT ceramics with the CIM technology.

  • PDF