• Title/Summary/Keyword: Stress Rupture

Search Result 291, Processing Time 0.022 seconds

Creep Life Prediction of Elevated Temperature Materials for Pressure Vessel by ISM (ISM에 의한 압력용기용 고온재료의 크리프 수명예측)

  • Kong, Y.S.;Kim, H.K.;Oh, S.K.;Lim, H.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • In this paper, friction welding optimization for 1Cr0.5Mo-STS304 (${\phi}14\;mm$), AE applications for the weld quality evaluation and the applications of various life prediction methods such as LMP (Larson-Miller Parameter) and ISM (initial strain method) were investigated : The creep behaviors of those steels and the friction welded joints under static load were examined by ISM combined with LMP at 400, 500, 550 and $600^{\circ}C$, and the relationship between these two kinds of phenomena was studied. The real-time predicting equations of elevated-temperature creep life (rupture time) under any creep stress at any elevated-temperature could be developed by LMP and LMP-ISM. It was confirmed that the life prediction equations by LMP and LMP-ISM are effective only up to 102 h and can not be used for long times of 103-106 h, but by ISM it can be used for long times creep prediction of more than 104 h with most reliability.

  • PDF

Calculation of Maximum Allowabel Temperature Difference for Life Design of Valve Casings for Steam Turbines of Fossil Power Plants (화력발전용 증기터빈 밸브 케이싱의 수명 설계를 위한 최대허용온도차 계산)

  • Ha, Joon-Wook;Kim, Tae-Woan;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.46-52
    • /
    • 1999
  • Large valves for steam turbines of fossil power plants are exposed to a severe mechanical and thermal loading resulting from steam with high pressure and high temperature. Valve casings are designed to withstand such a loading. During the operation of a plant, temperatures at inner and outer surface of the casings are measured and steam flow is controlled so that the measured difference is lower than the maximum allowable value determined in the design stage. In this paper, a method is presented to calculate the maximum allowable temperature difference at the inner and outer surface of valve casings for steam turbines of fossil power plants. The finite element method is used to analyze distribution of temperature and stresses of a casing under the operating condition. Low cycle fatigue and creep rupture are taken into consideration to determine the maximum allowable temperature difference. The method can be usefully applied in the design stage of the large valves for the steam turbines, contributing to safe and reliable operation of the fossil power plants.

  • PDF

Nonlinear Analysis Method of the Reinforced Concrete Member Considering the Geometric and the Material Nonlinearities (기하비선형과 재료비선형을 동시에 고려한 철근콘크리트 부재의 비선형 해석)

  • Han, Jae-Ik;Lee, Kyung-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2002
  • The purpose of this study is to propose the nonlinear analysis method which combines the nonlinear incremental method with the layered method to solve the problems due to the geometric and the material nonlinearities. As numerical analysis models, the reinforced concrete simple beam and the steel arch frame are used to verify the algorithm of the proposed nonlinear method. The results are gotten from the computation procedures. According to the results of this study, the fracture pattern of the beam according to the ratio of tensile steel and the strength of the concrete and the steel can be estimated by the proposed method. Therefore, the load-deflection curve of structure can be, exactly, depicted by the proposed method. Also, the rupture load, the site and the depth of crack of the beam can analytically be checked by the proposed method. In this respect, the proposed method contributes for the solving the stability problem of the actual structure.

Deep neural network based prediction of burst parameters for Zircaloy-4 fuel cladding during loss-of-coolant accident

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2565-2571
    • /
    • 2020
  • Background: Understanding the behaviour of nuclear fuel claddings by conducting burst test on single cladding tube under simulated loss-of-coolant accident conditions and developing theoretical cum empirical predictive computer codes have been the focus of several investigations. The developed burst criterion (a) assumes symmetrical deformation of cladding tube in contrast to experimental observation (b) interpolates the properties of Zircaloy-4 cladding in mixed α+β phase (c) does not account for azimuthal temperature variations. In order to overcome all these drawbacks of burst criterion, it is reasoned that artificial intelligence technique may be a better option to predict the burst parameters. Methods: Artificial neural network models based on feedforward backpropagation algorithm with logsig transfer function are developed. Results: Neural network architecture of 2-4-4-3, that is model with two hidden layers having four nodes in each layer is found to be the most suitable. The mean, maximum, and minimum prediction errors for this optimised model are 0.82%, 19.62%, and 0.004%, respectively. Conclusion: The burst stress, burst temperature, and burst strain obtained from burst criterion have average deviation of 19%, 12%, and 53% respectively whereas the developed neural network model predicted these parameters with average deviation of 6%, 2%, and 8%, respectively.

A Characteristics of Heat Affected Zones in Weld Repair for a Damaged CrMoV Turbine Rotor Steel (손상된 CrMoV 터빈로터강의 보수용접에서 후열처리 온도에 따른 열영향부의 특성)

  • 김광수;오영근;안병국
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.89-98
    • /
    • 1996
  • This study was performed to establish the characteristics of the heat affected zones from view point of the repair weldability for a damaged CrMoV steam turbine rotor steel. Characterization of the heat affected zones of the weldment was conducted with respect to various of postweld heat treatment temperatures, $566^{\circ}C$, $621^{\circ}C$ and $677^{\circ}C$. The evaluations of the heat affected zones were carried out in terms of microstructural characterization, microhardness measurements, Charpy v-notch impact, tensile and stress-rupture tests. The results indicated that the effect of the postweld heat treatment at $677^{\circ}C$ exhibited the favorable microstructure and mechanical properties for the stability of the heat affected zones. While the heat affected zone of the weldment, produced without postweld heat treatment, displayed the inferior toughness and microstructure indicating localized carbide precipitations on the grain boundary. It was also indicated that the stability of the heat affected zones were deteriorated by the formation of the cavitation on the grain boundaries.

  • PDF

DETERMINISTIC EVALUATION OF DELAYED HYDRIDE CRACKING BEHAVIORS IN PHWR PRESSURE TUBES

  • Oh, Young-Jin;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.265-276
    • /
    • 2013
  • Pressure tubes made of Zr-2.5 wt% Nb alloy are important components consisting reactor coolant pressure boundary of a pressurized heavy water reactor, in which unanticipated through-wall cracks and rupture may occur due to a delayed hydride cracking (DHC). The Canadian Standards Association has provided deterministic and probabilistic structural integrity evaluation procedures to protect pressure tubes against DHC. However, intuitive understanding and subsequent assessment of flaw behaviors are still insufficient due to complex degradation mechanisms and diverse influential parameters of DHC compared with those of stress corrosion cracking and fatigue crack growth phenomena. In the present study, a deterministic flaw assessment program was developed and applied for systematic integrity assessment of the pressure tubes. Based on the examination results dealing with effects of flaw shapes, pressure tube dimensional changes, hydrogen concentrations of pressure tubes and plant operation scenarios, a simple and rough method for effective cooldown operation was proposed to minimize DHC risks. The developed deterministic assessment program for pressure tubes can be used to derive further technical bases for probabilistic damage frequency assessment.

A Study on Development of Pre-heat Treated Steel Head Bolt for Swashplate Type Compressor of Car Air-conditioner (차량용 에어컨 압축기의 선조질강 헤드 볼트 개발에 대한 연구)

  • Kim, Youngshin;Kim, Hokyoum;Hwang, Seungyong;Kim, Youngman
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.588-595
    • /
    • 2016
  • This paper is a study on head bolts that are used in A/C compressors to reduce production cost and solve leak problems on the head bolt seat area that causes massive intermittent malfunctioning during production. In this study, the pre-heat treated steel, which was used as a material in the head bolt, eliminated the heat treatment process after forging. The pre-heat treated steel head bolts, which have 10 % lower tensile strength than the conventional SCM 435 head bolts, were selected after considering the results of creeping rupture properties, axial force, and stress concentration per tensile strength variation. Then, the performance test and the durability test with the A/C compressor that was assembled with the pre-heat treated steel head bolts were performed and verified. Based on the results, the pre-heat treated steel head bolts developed in this study saved 7.3 % in production cost by eliminating the heat treatment process and the logistics process. Furthermore, the leak problem on the head bolt seat area in the A/C compressor was addressed significantly on the mass production assembly line.

Metal/$Al_2O_3-SiO_2$ System Interface Investigations

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.70-73
    • /
    • 2004
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics (Al$_2$O$_3$-SiO$_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a Cu/Al$_2$O$_3$-SiO$_2$ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

Fracture and Residual Stresses in $Metal/Al_2O_3-SiO_2$ System

  • Soh, D.;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.308-312
    • /
    • 2003
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics ($Al_2O_3-SiO_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a $Cu/Al_2O_3-SiO_2$ ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

Effect of hot press time on the structure characteristics and mechanical properties of silk non-woven fabric

  • Kim, Ye Eun;Bae, Yu Jeong;Seok, Young Seek;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.44 no.1
    • /
    • pp.12-20
    • /
    • 2022
  • In this research, the silk web was hot-pressed for various times, the effect of press time on the structure and mechanical properties of silk non-woven fabric was also investigated. The yellowing appeared in the silk non-woven fabric and became more apparent as press time was increased. The crystallinity of silk was decreased by the hot press treatment and it did not change significantly with an increase of hot press time. The porosity of silk non-woven fabric was constantly decreased until 120 s and it did not change much after that. The thickness of silk non-woven fabric was significantly decreased by a press time of 10 s and slightly decreased with a further increase of hot press time. The hot press treatment increased the maximum stress and elongation of silk non-woven fabrics. The press time had a significant impact on the mechanical properties of silk non-woven fabric, with 90 s being the optimum condition for the best work of rupture of silk non-woven fabric.