• Title/Summary/Keyword: Stress Resistance

Search Result 2,304, Processing Time 0.035 seconds

LPI-based Assessment of Liquefaction Potential on the West Coastal Region of Korea (액상화 가능 지수를 이용한 국내 서해안 지역의 액상화 평가)

  • Seo, Min-Woo;Sun, Chang-Guk;Oh, Myoung-Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.1-13
    • /
    • 2009
  • Liquefaction is a significant threat to structures on loose saturated sandy soil deposits in the event of an earthquake, and can often cause catastrophic damage, economic loss, and loss of life. Nevertheless, the Korean peninsula has for a long time been recognized as a safe region with respect to the hazard of liquefaction, as the peninsula is located in a moderate seismicity region, and there have been no reports of liquefaction, with the exception of references in some historical documents. However, some earthquakes that have recently occurred in different parts of the world have led to liquefaction in non-plastic silty soils, a soil type that can be found in many of the western coastal areas of Korea. In this study, we first present procedures for evaluating the liquefaction potential, and calculate the liquefaction potential index (LPI) distribution at two western coastal sites using both piezocone penetration test (CPTu) data and standard penetration test (SPT) data. The LPI is computed by integrating liquefaction potential over a depth of 20m, and provides an estimate of liquefaction-related surface damage. In addition, we compared the LPI values obtained from CPTu and SPT, respectively. Our research found that the CRR values from CPTu were lower than those from the SPT, particularly in the range between 40 and 120 for the corrected tip resistance, (qc1N)CS, from the CPTu, or in the range of CRR less than 0.23, resulting in relatively high LPI values. Moreover, it was observed that the differences in the CRR between the two methods were relatively higher for soils with high fine contents.

A Study on the Shear Bond Strength of the Reinforced Composite Resin to Dental Alloys (강화형 복합레진과 수종의 치과용 합금간의 전단결합강도에 관한 연구)

  • Kim, Jung-Hee;Jo, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 2000
  • The reinforced composte resin as the esthetic operative material continuously has been studied because the porcelain fused metal prosthesis is widely used for its excellent esthetics, rigidity and marginal integrity, but it has low fracture resistance against the tensile strength and stress, attrition of the opposite teeth. The reinforced composite resin is well adapt with the dental alloy but it is low the shear bond strength with the dental alloy vs the porcelain fused metal prosthesis, and then has been studied continuously. The purpose of the study was to examine how metal was the higher shear bond strength among the dental alloy was used to the reinforced composite resin and to find the effect that the particle size of sandblasting influenced the shear bond strength. We built up the reinforced composite resin with 4 mm in diameter, 3 mm in height on circular alloy with 5 mm in diameter, 2 mm in height. Type II gold, type IV gold, and Ag-Pd alloy was used as alloys and $50{\mu}m$, $110{\mu}m$, $250{\mu}m$ of the particle size was sandblasted at each alloy in bonding between alloy and resin. We made 90 secimens of 10 per each group and we measured the shear bond strength using the Instron($M100EC^{(R)}$, Mecmesin Co., England). The obtained results were as follows : 1. In comparison among each alloys, Ag-Pd alloy had the highest shear bond strength and the shear bond strength was decreased significantly in the sequence of the type II gold and type IV gold(P<0.001). 2. In comparison according to the size of sandblasting particle, (1) In Ag-Pd alloy, shear bond strength was decreased in the sequence of $110{\mu}m$, $250{\mu}m$, $50{\mu}m$ and there were significant difference in all the group. (P<0.05) (2) In type II gold, it was decreased in the sequence of $250{\mu}m$, $50{\mu}m$, $110{\mu}m$ and there were significant difference. (P<0.05) (3) In type IV gold, it was decreased in the sequence of $110{\mu}m$, $50{\mu}m$, $250{\mu}m$. There were significant difference between the group of $110{\mu}m$ and $50{\mu}m$, the group of $110{\mu}m$ and 250, but there were no significant difference in the group of $50{\mu}m$ and $250{\mu}m$. 3. The highest shear bond strength according to the size of sandblasting particle was $110{\mu}m$ in Ag-Pd alloy and type IV gold, $250{\mu}m$ in type II gold.

  • PDF

Characteristics and Physical Property of Tungsten(W) Related Diffusion Barrier Added Impurities (불순물을 주입한 텅스텐(W) 박막의 확산방지 특성과 박막의 물성 특성연구)

  • Kim, Soo-In;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.518-522
    • /
    • 2008
  • The miniaturization of device size and multilevel interlayers have been developed by ULSI circuit devices. These submicron processes cause serious problems in conventional metallization due to the solubility of silicon and metal at the interface, such as an increasing contact resistance in the contact hole and interdiffusion between metal and silicon. Therefore it is necessary to implement a barrier layer between Si and metal. Thus, the size of multilevel interconnection of ULSI devices is critical metallization schemes, and it is necessary reduce the RC time delay for device speed performance. So it is tendency to study the Cu metallization for interconnect of semiconductor processes. However, at the submicron process the interaction between Si and Cu is so strong and detrimental to the electrical performance of Si even at temperatures below $200^{\circ}C$. Thus, we suggest the tungsten-carbon-nitrogen (W-C-N) thin film for Cu diffusion barrier characterized by nano scale indentation system. Nano-indentation system was proposed as an in-situ and nanometer-order local stress analysis technique.

Effects of Hot Isostatic Pressing on Bond Strength and Elevated Temperature Characteristics of Plasma sprayed TBC (HIP처리가 플라즈마 용사된 열차폐 코팅층의 접착강도와 고온특성에 미치는 영향)

  • Park, Young-Kyu;Kim, Sung-Hwi;Kim, Doo-Soo;Lee, Young-Chan;Choi, Cheol;Jung, Jin-Sung;Kim, Gil-Moo;Kim, Jae-Chul
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2000
  • A study has been made to investigate the effects of hot isostatic pressing(HIP ping) on bond strength and elevated temperature characteristics of thermal barrier coating(TBC). The specimens were prepared by HIPping of TBC which is composed of the ceramic top coat(8wt%$Y_2$$O_3$-$ZrO_2$) and the metallic bond coat on the matrix of IN738LC superalloy. The results showed that the porosity and microcracks in the ceramic top coat of TBC were significantly decreased by HIP. As a result, the bond strength of the HIPped coating was increased above 48% compared to that of as-coated specimen and microstructure was homogenized. It was found that the thermal cycle resistance of HIPped coating was inferior to that of as-coated specimen. It was considered that this result was mainly caused by the reduction of internal defects in the top coat layer which could play a role in relaxing the thermal stress due to a large difference in thermal expansion between TBC and matrix.

  • PDF

Analysis of Piled Raft Interactions on Clay with Centrifuge Test (원심모형실험을 통한 점토지반에서의 말뚝지지 전면기초 상호작용)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.57-67
    • /
    • 2012
  • In the design for piled rafts, the load capacity of the raft is in general ignored and the load capacities of pile are only considered for the estimation of the total load carrying capacity of the piled raft. The axial resistance of piled raft is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, acts as a key element in the design for piled rafts. In this study, a series of centrifuge model tests has been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) at the stiff and soft clays. From the test results, it is observed that the interactions of piles, soil, and raft has little influences on the load capacities of piles and raft in piled rafts compared with the load capacities of group piles and raft at the same clay soil condition.

Localized reliability analysis on a large-span rigid frame bridge based on monitored strains from the long-term SHM system

  • Liu, Zejia;Li, Yinghua;Tang, Liqun;Liu, Yiping;Jiang, Zhenyu;Fang, Daining
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.209-224
    • /
    • 2014
  • With more and more built long-term structural health monitoring (SHM) systems, it has been considered to apply monitored data to learn the reliability of bridges. In this paper, based on a long-term SHM system, especially in which the sensors were embedded from the beginning of the construction of the bridge, a method to calculate the localized reliability around an embedded sensor is recommended and implemented. In the reliability analysis, the probability distribution of loading can be the statistics of stress transferred from the monitored strain which covered the effects of both the live and dead loads directly, and it means that the mean value and deviation of loads are fully derived from the monitored data. The probability distribution of resistance may be the statistics of strength of the material of the bridge accordingly. With five years' monitored strains, the localized reliabilities around the monitoring sensors of a bridge were computed by the method. Further, the monitored stresses are classified into two time segments in one year period to count the loading probability distribution according to the local climate conditions, which helps us to learn the reliability in different time segments and their evolvement trends. The results show that reliabilities and their evolvement trends in different parts of the bridge are different though they are all reliable yet. The method recommended in this paper is feasible to learn the localized reliabilities revealed from monitored data of a long-term SHM system of bridges, which would help bridge engineers and managers to decide a bridge inspection or maintenance strategy.

Isolation of Agrobacterium sp. BE516 from the Root of Miscanthus sacchariflorus and Its Plant Growth Promoting Activity (물억새 뿌리로부터 Agrobacterium sp. BE516 균주의 분리 및 식물생육촉진활성)

  • Kang, Hye-Young;Park, Dong-Jin;Lee, Jae-Chan;Kwon, Mi-Kyung;Kim, Seung-Bum;Kim, Chang-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.2
    • /
    • pp.129-133
    • /
    • 2012
  • To exploit plant growth promoting bacteria in the roots of Miscanthus sacchariflorus, a biomass energy crop, total 64 bacteria were isolated. For the investigation of plant growth promoting effects from the isolated bacteria, production of indole acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activities were tested and other cultural conditions were examined. As results, 8 isolates showed plant growth promoting effects on the M. sacchariflorus and an isolate designated Agrobacterium sp. BE516 has the highest activity by enhancing the shoot elongation over 2-fold than the control. Agrobacterium sp. BE516 produced 64 ${\mu}g$ IAA per mL and showed ACC deaminase activity which is involved in the resistance to environmental stress such as high salt and drought. It could grow at low temperature in the range from 4 to $15^{\circ}C$, at pH 4.0 and at 4% NaCl. These results indicate that the Agrobacterium sp. BE516 can be useful as a bio-fertilizer for M. sacchariflorus under the stressed conditions.

Evaluation of Hydraulic Stability Using Real Scale Experimental on Porous Concrete Revetment Block (다공성콘크리트 호안블록의 실규모 실험을 통한 수리안정성 평가)

  • Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.122-130
    • /
    • 2016
  • The past few decades of industrialization enabled human-centered stream developments, which in turn resulted in constructing straight or covered streams, which are used only for sewage disposal purpose. However, these types of streams have become the cause of flood damages such as localized heavy rain. In response, various construction methods have been implemented to prevent stream and embankment damages. However, regulations regarding these measures only lay out minimum standards such as the height of slopes and the minimum angle of inclination. Moreover, examination of tractive force, the most crucial factor in preventing flood damage, is nonexistent. Therefore, this study evaluates various tractive forces by implementing a porous concrete tetrapod at a full scale artificial stream for experiment, controlling the rate of inflow, and measuring the velocity and depth of the stream under different experiment conditions. The test results of the compressive strength, and porosity and density of rock of the porous concrete tetrapod was between 16.6 and 23.2 MPa, and the actual measurement of air void was 10.1%, thus satisfying domestic standard. The result of tractive force experiment showed a limiting tractive force of $47.202N/m^2$, not satisfying the tractive force scope of $67N/m^2$ the stream design working expertise proposes. However, there was neither damage nor loss of blocks and hardpan. Based on previous researches, it can be expected that there will be resistance against a stronger tractive force. Therefore, it is necessary to conduct another experiment on practical limiting tractive force by adjusting some experimental conditions.

Growth and Quality Changes of Creeping Bentgrass by Application of Liquid Fertilizer Containing Silicate (규산 함유 액상비료 시비에 따른 크리핑 벤트그래스의 생육과 품질 변화)

  • Kim, Young-Sun;Lee, Chang-Eun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.170-176
    • /
    • 2016
  • Superintendents have used a silicate fertilizer to improve a resistance of turfgrass against several diseases, drought damage and wear stress. This study was conducted to evaluate the effect of liquid fertilizer containing silicate (LFSi) on changes of turfgrass quality and growth by investigating visual quality, chlorophyll content-chlorophyll a, chlorophyll b, and total chlorophyll, root length, shoot length, dry weight of clipping, and nutrient content in leaves tissue. Treatments were designed as follows; control fertilizer (CF), SiF-1 (CF + $1ml\;m^{-2}$ LFSi), SiF-2 (CF + $2ml\;m^{-2}$ LFSi), and SiF-3 (CF + $4ml\;m^{-2}$ LFSi). As compared with CF, soil chemical properties, visual turfgrass quality, chlorophyll content, and dry weight of clipping of LFSi treatments were not significantly. Contrastingly, shoot density, root length, and the content of nitrogen or potassium were increased by application of LFSi. The content of Si in the tissue was positively correlated with potassium content or shoot length, and similarly shoot density positively with chlorophyll content or visual quality, respectively. These results suggested that the application of LFSi improved the turfgrass quality by increasing shoot density or K content in leaf tissue of creeping bentgrass.

Physiological and Biochemical Responses of Sedum kamtschaticum and Hosta longipes to Ozone Stress (기린초와 비비추의 오존에 대한 생리·생화학적 반응)

  • Cheng, Hyo Cheng;Woo, Su Young;Lee, Seong Han;Kwak, Myeong Ja;Kim, Kyeong Nam
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, the resistance to ozone and characteristics of ozone-induced damage were investigated on the perennial ground cover plant species. Sedum kamtschaticum and Hosta longipes were exposed to $200{\mu}g{\cdot}kg^{-1}$ ozone for 8 hours per day (from 08:00 to 16:00) in the naturally irradiated phytotron. The extent of ozone-induced damage was measured through the analysis of physiological parameters, such as water use efficiency (WUE), chlorophyll content (Chl. a, Chl. b, Chl. a + b, and Chl. a/b ratio), carotenoid contents, and the induction of reactive oxygen species (ROS). Ozone exposure significantly reduced the daytime WUE in both species. The contents of chlorophyll and carotenoid were also decreased and ROS, such as hydrogen peroxide ($H_2O_2$) and superoxide radical ($O_2{^-}$) were accumulated after ozone exposure. The above results of this study suggested that S. kamtschaticum is more resistant to atmospheric ozone than Hosta longipes. Considering its fast responses to ozone, it was also assumed that Hosta longipes can be used as an indicator plant of an increase in atmospheric ozone concentration.