• 제목/요약/키워드: Stress Range

검색결과 2,514건 처리시간 0.028초

차량용 스프링강의 피로거동에 미치는 온도의 영향 (An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle)

  • 박경동;류찬욱
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

숏피닝 가공재의 저온 피로 강도 평가 (An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature)

  • 박경동;권오헌
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.

압력용기용 강의 저온 피로크랙 하한계 특성에 관한 연구(II) (A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature)

  • 박경동;김정호;정찬기;하경준
    • 한국해양공학회지
    • /
    • 제14권3호
    • /
    • pp.78-83
    • /
    • 2000
  • In this study, CT specimens were prepared from AST SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at 25$^{\circ}C $, -60$^{\circ}C $, -80$^{\circ}C $ and -100$^{\circ}C $ and in the range of stress ratio of 0.05, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\delta} K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\delta $K in the stable of fatigue crack growth (Region II) were increased in proportion to descending temperature. It was assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN -$\delta $K in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate da/dN is rapid in proportion to descending temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

큐폴라 용해로 철피의 열응력 및 피로수명 해석 (Analysis of Thermal Stress and Fatigue Life in the Steel Shell of a Cupola Furnace)

  • 양영수;배강열
    • 한국기계가공학회지
    • /
    • 제19권2호
    • /
    • pp.47-54
    • /
    • 2020
  • Themo-mechanical analysis was carried out using the finite element method for the steel shell of a cupola furnace. When the outer surface of the shell was cooled with water to within the temperature range of 35-80 ℃ during operation of the cupola, the inner surface of the shell was expected to exhibit a temperature of 65-248 ℃ based on heat transfer analysis. The shell was also expected to have an equivalent stress range of 100-280 MPa in the outer surface over the temperature range examined. Upon cooling the shell to obtain an outer surface temperature <80 ℃, the maximum equivalent stress of the shell did not exceed the yield strength. Although the temperature of the outer surface varied between 35 and 80 ℃ periodically due to the cooling control problem, the fatigue stress at the outer surface of the shell was calculated to be within the fatigue strength. During a non-operational period to examine the system between furnace operations, the thermal stress presented in the shell was sufficiently low to reach the desired yield strength and fatigue limit.

철골구조물의 존재응력 추정에 관한 해석적 연구 (An Analytical Study to evaluate Existing Stress of Steel Structural Member)

  • 김갑순;신의균;김우범;정수영
    • 한국강구조학회 논문집
    • /
    • 제11권3호통권40호
    • /
    • pp.301-309
    • /
    • 1999
  • 본 연구의 목적은 소성영역에서의 철골 부재내에 존재하는 존재응력을 추정하는 법을 개발하기 위함이다. 여기에선 선행 실험 연구를 근거로 하여 응력집중 현상에 기인한 국부 소성화를 고려하여 보정계수법이 제안되었다. 구멍주위의 응력 분포를 파악하기 위하여 유한요소 해석을 수행하였고, 그 결과를 탄 소성역에서의 구멍내기법에 의한 결과와 비교하였다. 보정계수법을 적용한 결과, 본 연구에서 제안된 방법은 실재 초기 존재응력값과 약 2% 정도의 오차를 가진 매우 좋은 결과치를 나타냈다.

  • PDF

저온 압력용기용 SA516강의 응력비에 따른 피로크랙 전파특성에 관한 연구 (A Study of Stress ratio on the Fatigue Crack Growth Characteristics of Pressure Vessel SA516 Street at Low Temperature)

  • 박경동;하경준
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 춘계학술발표대회 개요집
    • /
    • pp.220-223
    • /
    • 2001
  • In this study, CT specimens were prepared hem ASTM SA516 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -l$0^{\circ}C$ and -l2$0^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ΔK$_{th}$ in the early stage of fatigue crack growth ( Region I ) and stress intensity factor range ΔK in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN - ΔK in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region H and the cryogenic-brittleness greatly affect a material with decreasing temperature.e.greatly affect a material with decreasing temperature.

  • PDF

압력용기용 강의 저온 피로크랙전파 하한계 특성에 관한 연구 (A Study on the Fatigue Crack Propagation Threshold Characteristic in Steel of Pressure Vessel at Low Temperature)

  • 박경동;박상오
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.326-331
    • /
    • 2001
  • In this study. CT specimens were prepared from ASME SA5l6 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -10$0^{\circ}C$ and -12$0^{\circ}C$ in the range of stress ratio of 0.1 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ΔKsub/th/ in the early stage of fatigue crack growth ( Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da.dN -ΔK in RegionII, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

스프링강의 피로파괴에 미치는 압축잔류응력의 영향 (A Study on the effect of Compressive residual stress on fatigue crack propagation behavior of the spring steel)

  • 진영범;박경동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.348-352
    • /
    • 2004
  • Recently the steel parts used for automiles and trains are required to be used under higher stress than ever before in need of the weight down. However, threr are a lot of problems with developing such of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And got the following characteristics from crack growth test carried out stress ratio. Fatigue life shows more improvement in the Un-peening material. And Compressive residual stress of surface on the Shot-peening processed operate resistance force of fatigue. So we cam obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent of Paris equation. (2) Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

매개변수 적용범위를 확장한 배관 곡관부에 용접 부착된 원형관 이음부의 이차응력지수 (Stress Indices of Hollow Circular Cross Section Welded Attachments on Piping Elbows with the Extended Parameters Range)

  • 이건석;문승재
    • 플랜트 저널
    • /
    • 제15권4호
    • /
    • pp.43-51
    • /
    • 2019
  • 배관계를 지지하는 목적으로 자주 사용되는 일체형 용접부착물은 응력집중효과로 인한 국부응력을 유발시켜 종종배관의 파손을 일으키기 때문에 사용에 각별한 주의를 요구하고 있다. 국내 원자력 발전소 배관 곡관부에 부착된 원형관의 국부응력 평가는 EPRI TR-107453에 따라 평가하고 있지만, 이의 적용에는 배관과 부착물의 크기에 관한 특정 매개변수 범위의 제한사항이 있다. 이 논문에서는 유한요소해석을 활용하여 모델들의 치수를 기반으로 한 매개변수 연구를 수행하여 기술적 근거를 확립하고 연구 결과에 대한 회귀분석을 통해 확장된 매개변수 범위를 갖는 곡관부에 부착된 원형관 이음부의 이차응력지수 산출 상관관계식을 도출하였다. 본 연구를 통해 개발된 새로운 상관관계식에 대한 검증을 통해 현재 평가기준의 대체 기준으로써 적용할 것을 제안한다.

Al 7075 합금의 크리이프 파단수명에 관한 연구( I ) (A Study on the Creep Fracture Life of Al 7075 alloy( I ))

  • 강대민
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.27-40
    • /
    • 1993
  • High temperature tensile tests, steady state creep tests, Internal stress tests and creep rupture tests using A17075 alloy( $T_{6}$ ) were performed over the temperature range of 9$0^{\circ}C$~50$0^{\circ}C$ (0.4 $T_{m}$ ~0.85 $T_{m}$ ) and stress range of 0.64~17.2(kgf/$\textrm{mm}^2$). The main results obtained in this paper were as follows. (1) The activation energies for yielding at the temperature of 0.4 $T_{m}$ ~0.75 $T_{m}$ were calculated to be 25.7~36.5kcal/mol, which were nearly equal to the activation energies for creep. (2) At around the temperature of 9$0^{\circ}C$~12$0^{\circ}C$ and under the stress level of 10~17.2(kgf/$\textrm{mm}^2$), and at around the temperature of 200~41$0^{\circ}C$ and under the stress level of 1.53~9.55(kgf/$\textrm{mm}^2$) and again at around the temperature of 470~50$0^{\circ}C$ and under the stress level of 0.62~l.02(kgf/$\textrm{mm}^2$), the applied stress dependence of steady state creep rate $n_{measu}$ measured were, respectively, 3.15, 6.62 and 1.1, which were in good agreement the calculated stress dependence $n_{ealeu}$ obtained by the difference of the applied stress dependence of the Internal stress and the ratio of the internal stress to the applied stress. (3) At the temperature range of 0.4~0.43 $T_{m}$ , and at the temperature range of 0.52~0.75 $T_{m}$ and again at the temperature range of 0.82~0.85 $T_{m}$ , the activation energies $Q_{measu}$ obtained by steady state creep rate, respective, 26. 16, 34.9, 36.2 and 36.1kcal/mol, which were in good agreement with those obtained with the activation energies under constant effective stress and the temperature dependence of Internal stress. (4) At the temperature range of the 0.52~0.73 $T_{m}$ and under the stress level of 1.53~9.55(kgf/$\textrm{mm}^2$), the stress dependence of rupture life(n’) measured was 6.3~6.6, which was in good agreement with the stress dependence of steady state creep rate(n). And at the same condition the activation energy for rupture( $Q_{f}$ ) measured was 32.0~36.9kca1/mol, which was also in good agreement with the activation energy obtained by steady state creep rate ( $Q_{c}$ ). (5) The rupture life( $t_{f}$ ) might be represented by athermal process attributed to the difference of the applied stress dependence of the internal stress and the ratio of the internal stress to the applied stress, and the thermal activated process attributied to the temperature dependence of the internal stress as $t_{f}$ = A'$\sigma$$_{a}$ {n(1-d $\sigma$$_{i}$ /d $\sigma$$_{a}$ )/(1-$\sigma$$_{i}$ / $\sigma$$_{a}$ )}.exp[{ $Q_{c}$ $^{*}$-( $n_{o}$ R $T^2$/ $E_{(T)}$) (d $E_{(T)}$/dT) - ( $n_{0}$ R $T^2$/ $\sigma$$_{a}$ - $\sigma$$_{i}$ ) (d $\sigma$$_{i}$ /dT)}/RT]. (6) The relationship betwween Larson-Miller rupture parameter and logarithmic stress was linearly decreased, so creep rupture life of Al 7075 alloy seemed to be predicted exactly with Larson-Miller parameter.meter.

  • PDF