• 제목/요약/키워드: Stress Mechanism

검색결과 2,199건 처리시간 0.027초

컴퓨터 시뮬레이션을 이용한 동응력 이력 계산기술 개발 (Calculation of Dynamic Stress Time History of a Component Using Computer Simulation)

  • 박찬종;박태원
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.52-60
    • /
    • 2000
  • In order to design a reliable machine component efficiently, it is necessary to set up the process of durability analysis using computer simulation technique. In this paper, two methods for dynamic stress calculation, which are basis of durability analysis, are reviewed. Then, a user-oriented dynamic stress analysis program is developed from these two algorithms together with a general-purpose flexible body dynamic analysis and structural analysis programs. Finally, a slider-crank mechanism which has a flexible connecting-rod is chosen to show the special characteristics of these two dynamic stress calculation methods.

  • PDF

ESPI 장비를 활용한 사형 주조품의 잔류응력 측정 및 주조 열응력 해석 (Residual Stress Measurement of Sand Casting by ESPI Device and Thermal Stress Analysis)

  • 곽시영;남정호
    • 한국주조공학회지
    • /
    • 제40권1호
    • /
    • pp.1-6
    • /
    • 2020
  • Many studies involving a thermal stress analysis using computational methods have been conducted, though there have been relatively few experimental attempts to investigate thermal stress phenomena. Casting products undergo thermal stress variations during the casting process as the temperature drops from the melting temperature to room temperature, with gradient cooling also occurring from the surface to the core. It is difficult to examine thermal stress states continuously during the casting process. Therefore, only the final states of thermal stress and deformations can be detemined. In this study, specimens sensitive to thermal stress, were made by a casting process. After which the residual stress levels in the specimens were measured by a hole drilling method with Electron Speckle-Interferometry technique. Subsequently, we examined the thermal stresses in terms of deformation during the casting process by means of a numerical analysis. Finally, we compared the experimental and numerical analysis results. It was found that the numerical thermal stress analysis is an effective means of understanding the stress generation mechanism in casting products during the casting process.

경사기능성 세라믹/금속 복합재료의 열응력해석 (Thermal Stress Analysis of Functuonally Graded Ceramic/Metal Composites(II))

  • 임재규;송준희
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1571-1579
    • /
    • 1997
  • The development of a new material which should be continuously use under severe environment of very high temperature has been urgently requested. For the development of such super-heat resistant materials, the main problem is not only to make the superior thermal barrier properties but also to actively release thermal stress. So, a new concept of functionally graded material(FGM) has been proposed to overcome this problem. A composition and microstructure of FGM are varied continuously from place to place in ways designed to provide it with the maximum function of mitigating the induced thermal stress. So, FGM can be applied in the aerospace, the electronic and the medical field, etc.. In this study, thermal stress analysis of sintering PSZ/NiCrAlY graded material was conducted theoretically using a finite-element program. The temperature condition was sintering temperature assuming a cooling-down process up to room temperature. Fracture damage mechanism was anlayzed by the parameters of residual stress. It could be known that FGM provided with the function of mitigating the induced thermal stress.

이종재료의 레이저용접에서 잔류응력 평가 (The Study on Residual Stress of Laser Weldment for the Heterogeneous Materials)

  • 오세헌;민택기
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.119-125
    • /
    • 2004
  • Generally, it is used the compensation spring to compensate the inaccuracy of screen image induced by thermal deformation in CRT monitor. Its mechanism is bi-metallic system made of heterogeneous metals and these is bonded by laser welding. But laser welding induces the non-uniform temperature distribution and locally residual stress is yielded by these temperature deviation. This paper studies residual stress of laser weldment using FEA and hole drilling method. The results are followed. In the case of heterogeneous materials weldment, higher residual stress induced in the weldment region of SUS 304 which have larger CTE than Ni 36 and residual stress on the middle of specimen is higher by 10.9% than that of its surface Measured residual stress of SUS 304 yield 481MPa and that of Ni 36 is 140.5MPa in the vicinity of the welding region. And the residual distribution is very similar in comparison with FEA result.

다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링 (An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF

스트레스의 개념에 대한 한의학적 해석 (Understanding the Conception of Stress regard in the Oriental Medicine)

  • 안상우
    • 한국한의학연구원논문집
    • /
    • 제3권1호
    • /
    • pp.119-151
    • /
    • 1997
  • Conclusions for the relationship between a conceptional model of stress theory and its examination based on the Oriental medicine; 1. It was considered that a general conception of stress is included into the meaning of Ki in the Oriental medicine. 2. The response-based model to stress could be comparable to a conception of Ki-pathogens interchange In the Onental medicine. 3. The stimulus-based model may be explained as a modern conception of immoderation feeling related with an internal etiological factor, specially injury of seven emotions, among three groups of etiological factors for disease. 4. The feedback conception based on the interaction model could explain the principal of reversible emotion therapy in the nine Ki. 5. In the Oriental medicine, a study to clarify a emotional etiologic factor and its pathophysiologlcal mechanism has been continued for long time before establishment of stress theory.

  • PDF

열간 유동응력 예측을 위한 물리식 기반 동적 재결정 모델 (A Physically Based Dynamic Recrystallization Model for Predicting High Temperature Flow Stress)

  • 이호원;강성훈;이영선
    • 소성∙가공
    • /
    • 제22권8호
    • /
    • pp.450-455
    • /
    • 2013
  • In the current study, a new dynamic recrystallization model for predicting high temperature flow stress is developed based on a physical model and the mean field theory. In the model, the grain aggregate is assumed as a representative volume element to describe dynamic recrystallization. The flow stress and microstructure during dynamic recrystallization were calculated using three sub-models for work hardening, for nucleation and for growth. In the case of work hardening, a single parameter dislocation density model was used to calculate change of dislocation density and stress in the grains. For modeling nucleation, the nucleation criterion developed was based on the grain boundary bulge mechanism and a constant nucleation rate was assumed. Conventional rate theory was used for describing growth. The flow stress behavior of pure copper was investigated using the model and compared with experimental findings. Simulated results by cellular automata were used for validating the model.

Elevated Temperature Deformation Behavior in an AZ31 Magnesium Alloy

  • Yang Kyoung-Tak;Kim Ho-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1209-1216
    • /
    • 2006
  • An AZ31 magnesium alloy was tested at constant temperatures ranging from 423 to 473 K (0.46 to 0.51 Tm) under constant stresses. All of the creep curves exhibited two types depending on stress levels. At low stress (${\sigma}/ G < 4 {\times}10^{-3}$), the creep curve was typical of class A (Alloy type) behavior. However, at high stresses (${\sigma}/ G > 4 {\times}10^{-3}$), the creep curve was typical of class M (Metal type) behavior. At low stress level, the stress exponent for the steady-state creep rate was of 3.5 and the true activation energy for creep was 101 kJ/mole which is close to that for solute diffusion. It indicates that the dominant deformation mechanism was glide-controlled dislocation creep. At low stress level where n=3.5, the present results are in good agreement with the prediction of Fridel model.

유연 OLED 디스플레이의 기계적 안정성을 위한 제로 스트레스 봉지막 설계 (Design of Zero-Stress Encapsulation for Mechanical Stability of Flexible OLED Displays)

  • 정은교
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.39-43
    • /
    • 2022
  • In this paper, a study was conducted on encapsulation technology for high mechanical stability of flexible displays. First, unlike conventional encapsulation barrier that exclude cracks as much as possible for low water vapor transmission rate (WVTR), mechanical properties were improved by using a defect suppression mechanism introduced with crack arresters. The zero-stress encapsulation barrier optimizes the residual stress of the thin film based to improve the internal mechanical stability. The zero-stress encapsulation barrier was applied to the organic light emitting diodes (OLEDs) to confirm its characteristics and lifetime. Due to improved internal mechanical stability, it has a longer lifetime more than 35% compared to conventional encapsulation technologies. As the zero-stress encapsulation barrier proposed in this study does not require additional deposition process, it is not difficult to apply it. Based on various advantages, it is expected to play an important role in flexible displays.

고정 감속비트랙션 드라이브의 압부력 발생장치에 대한 연구 (Study on a loading mechanism for fixed ratio traction drives)

  • 김성열;김배진;박대현;오세훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1212-1218
    • /
    • 2003
  • A novel loading mechanism of wedge roller type has been developed. This type traction drive has long system life and high efficiency by changing the pre-load on a contact point. And this loading mechanism does not need precision machining. So it has, as opposed to the conventional loading mechanism, an advantage in saving manufacturing cost. In this paper, by analyzing pre-load generating mechanism, spring pre-load and the roller size are defined and the stress on the contact point by pre-load is calculated. On the basis of this analysis, the model of wedge roller type traction drive for the test is made and was carried out its performance test. It can transmit input torque up to 1.5 N m, with high efficiency over 91% up to 98%, with slip rate under 2.5%.

  • PDF