• 제목/요약/키워드: Stress Inhibitor

검색결과 350건 처리시간 0.033초

Oxidative stress-induced aberrant G9a activation disturbs RE-1-containing neuron-specific genes expression, leading to degeneration in human SH-SY5Y neuroblastoma cells

  • Kim, Ho-Tae;Ohn, Takbum;Jeong, Sin-Gu;Song, Anji;Jang, Chul Ho;Cho, Gwang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권1호
    • /
    • pp.51-58
    • /
    • 2021
  • Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2 treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2-treated cells; however, it recovered on G9a inhibition. H2O2-treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a. H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2-treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2-treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.

Al 소지상에 무전해 Ni도금시 응력 변화 (The Change in Residual Stress of Electroless Nickel Deposits on Aluminum Substrate)

  • 권진수;최순돈
    • 한국표면공학회지
    • /
    • 제29권2호
    • /
    • pp.100-108
    • /
    • 1996
  • The internal stress of acidic electroless nickel deposits on zincated aluminum was determined by spiral contractometer. Several plating conditions such as inhibitor and complexing agent concentrations and pH affecting the internal stress were studied. The resulting intrinsic stress contribution to the total stress was discussed in terms of phosphorous content of the deposit, solution pH, and surface morphology. However, the most important was found to be thermal stress for the total stress of Al substrate, because of high thermal expansion coefficient of the aluminum substrate.

  • PDF

Effect of Additives on the Stress Corrosion Cracking Behavior of Alloy 600 in High Temperature Caustic Solutions

  • Hur, Do Haeng;Kim, Joung Soo;Baek, Jae Sun;Kim, Jung Gu
    • Corrosion Science and Technology
    • /
    • 제3권1호
    • /
    • pp.6-13
    • /
    • 2004
  • The effect of inhibitors on the electrochemical behavior and the stress corrosion cracking resistance of Alloy 600(UNS N06600) was evaluated in 10% sodium hydroxide solution at $315^{\circ}C$. The specimens of a C-ring type for stress corrosion cracking test were polarized at 150 mV above the corrosion potential for 120 hours with and without inhibitors such as titanium oxide, titanium boride and cerium boride. The chemical compositions of the films formed on the crack tip in the C-ring specimens were analyzed using a scanning Auger electron spectroscopy. The cerium boride, the most effective, was observed to decrease the crack propagation rate more than a factor of three compared with that obtained in no inhibitor solution. It was found that the changes of the active-passive transition potentials and the film compositions were related to the resistance to stress corrosion cracking in high temperature caustic solution.

JNK/SAPK Is Required in Nitric Oxide-Induced Apoptosis in Osteoblasts

  • Kang, Young-Jin;Chae, Soo-Wan
    • Archives of Pharmacal Research
    • /
    • 제26권11호
    • /
    • pp.937-942
    • /
    • 2003
  • Nitric oxide(NO) induces apoptosis in human osteoblasts. Treatment with exogenous NO donors, SNAP (S-Nitroso-N-acelylpenicillamine) and SNP (sodium nitroprusside), to MG-63 osteoblasts resulted in apoptotic morphological changes, as shown by a bright blue-fluorescent condensed nuclei and chromatin fragmentation by fluorescence microscope of Hoechst 33258-staining. The activities of caspase-9 and the subsequent caspase-3-like cysteine proteases were increased during NO-induced cell death. Pretreatment with Z-VAD-FMK (a pancaspase inhibitor) or Ac-DEVD-CHO (a specific caspase-3 inhibitor) abrogated the NO-induced cell death. The NO donor markedly activated JNK, a stress-activated protein kinase in the human osteoblasts. This study showed that the inhibition of the JNK pathway markedly reduced NO-induced cell death. But neither PD98059 (MEK inhibitor) nor SB203580 (p38 MAPK inhibitor) had any effect on NO-induced death. Taken together, these results suggest that JNK/SAPK may be related to NO-induced apoptosis in MG-63 human osteoblasts.

Isolation of Sphinin, an Inhibitor of Sphingomyelinase, from Streptomyces sp. F50970

  • LIM, SI-KYU;WAN PARK
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.655-660
    • /
    • 1999
  • Sphingomyelinase (SMase EC:3.l.4.l2) has been suggested to play important roles in the cell cycle, differentiation, apoptosis, inflammation, and the regulation of eukaryotic stress responses. SMase inhibitors may be a powerful tool to elucidate and regulate these cellular responses in which SMase involves. We first isolated an SMase inhibitor, named sphinin, from a strain of soil actinomycetes, F50970. Sphinin inhibited Mg/sup 2+/ -dependent neutral SMase from chicken embryo at 1.2 ㎍/㎖ of IC/sub 50/ Sphinin also inhibited acidic SMase, but it had no inhibitory activity on PI-PLC and PC-PLC, suggesting that sphinin is a specific inhibitor of SMase. The strain F50970 was identified as a Streptomyces sp. by its spiral spore chain, LL-diaminopimelic acid, menaquinone patterns of MK-9 (H'6) and MK-9 (H'8), FA-2c type of fatty acid pattern, and other morphological, physiological, and cultural characteristics.

  • PDF

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

Differential Sensitivity of Wild-Type and BRAF-Mutated Cells to Combined BRAF and Autophagy Inhibition

  • Yeom, Hojin;Hwang, Sung-Hee;Han, Byeal-I;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제29권4호
    • /
    • pp.434-444
    • /
    • 2021
  • BRAF inhibitors are insufficient monotherapies for BRAF-mutated cancer; therefore, we investigated which inhibitory pathway would yield the most effective therapeutic approach when targeted in combination with BRAF inhibition. The oncogenic BRAF inhibitor, PLX4720, increased basal autophagic flux in BRAF-mutated cells compared to wild-type (WT) BRAF cells. Interestingly, early autophagy inhibition improved the effectiveness of PLX4720 regardless of BRAF mutation, whereas late autophagy inhibition did not. Although ATG5 knockout led to PLX4720 resistance in both WT and BRAF-mutated cells, the MEK inhibitor trametinib exhibited a synergistic effect on PLX4720 sensitivity in WT BRAF cells but not in BRAF-mutated cells. Conversely, the prolonged inhibition of endoplasmic reticulum (ER) stress reduced basal autophagy in BRAF-mutated cells, thereby increasing PLX4720 sensitivity. Taken together, our results suggest that the combined inhibition of ER stress and BRAF may simultaneously suppress both pro-survival ER stress and autophagy, and may therefore be suitable for treatment of BRAF-mutated tumors whose autophagy is increased by chronic ER stress. Similarly, for WT BRAF tumors, therapies targeting MEK signaling may be a more effective treatment strategy. Together, this study presents a rational combination treatment strategy to improve the efficacy of BRAF inhibitors depending on BRAF mutation status.

Astrocyte 세포와 C6 glioma 세포에서 ER stress 유도 물질 brefeldin A에 의한 CHOP 단백질의 발현 차이 (Brefeldin A-induced Endoplasmic Reticulum Stress Leads to Different CHOP Expression in Primary Astrocyte Cells and C6 Glioma Cells)

  • 박은정;권택규
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.490-495
    • /
    • 2016
  • Brefeldin A (BFA)는 Eupenicillium brefeldianum에서 분리한 lactone계열의 항생제이며 ER에서 Golgi로 단백질 이송/전달을 억제히는 기능이 있다. 따라서 BFA를 세포에 처리 시 Golgi 기능 장애와 ER에서 단백질의 폴딩/조립의 문제로 인하여 ER에 기능 장애가 발생하는데 이를 소포체 스트레스(ER stress)라고 한다. 본 연구에서는 정상 astrocyte 세포와 C6 glioma 세포에서의 BFA처리에 따라 ER stress marker 단백질인 CHOP 발현 차이를 확인하였다. BFA 처리 시 CHOP 발현이 정상 astrocyte 세포에서 C6 glioma 세포에 비해 현저히 낮은 발현을 확인하였다. 하지만 CHOP mRNA 발현에서는 astrocyte 세포에서 발현 됨을 RT-PCR로 확인하였다. C6 glioma 세포와 비교하여 astrocyte 세포에서 BFA유도의 CHOP 단백질 발현이 낮은 원인은 proteasome 활성이 높음으로 기인됨을 proteasome inhibitor 실험과 proteasome 활성 측정을 통하여 확인하였다.

Oxymatrine Causes Hepatotoxicity by Promoting the Phosphorylation of JNK and Induction of Endoplasmic Reticulum Stress Mediated by ROS in LO2 Cells

  • Gu, Li-li;Shen, Zhe-lun;Li, Yang-Lei;Bao, Yi-Qi;Lu, Hong
    • Molecules and Cells
    • /
    • 제41권5호
    • /
    • pp.401-412
    • /
    • 2018
  • Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.

Selonsertib, an ASK1 Inhibitor, Ameliorates Ovalbumin-Induced Allergic Asthma during Challenge and Sensitization Periods

  • So-Young Han;Dong-Soon Im
    • Biomolecules & Therapeutics
    • /
    • 제32권4호
    • /
    • pp.451-459
    • /
    • 2024
  • Apoptosis signal-regulating kinase 1 (ASK1) is an upstream signaling molecule in oxidative stress-induced responses. Because oxidative stress is involved in asthma pathogenesis, ASK1 gene deficiency was investigated in animal models of allergic asthma. However, there is no study to investigate whether ASK1 inhibitors could be applied for asthma to date. Selonsertib, a potent and selective ASK1 inhibitor, was applied to BALB/c mice of an ovalbumin (OVA)-induced allergic asthma model. Selonsertib suppressed antigen-induced degranulation of RBL-2H3 mast cells in a concentration-dependent manner. The administration of selonsertib both before OVA sensitization and OVA challenge significantly reduced airway hyperresponsiveness, and suppressed eosinophil numbers and inflammatory cytokine levels in the bronchoalveolar lavage fluid. Histopathologic examination elucidated less inflammatory responses and reduced mucin-producing cells around the peribronchial regions of the lungs. Selonsertib also suppressed the IgE levels in serum and the protein levels of IL-13 in the bronchoalveolar lavage fluid. These results suggest that selonsertib may ameliorate allergic asthma by suppressing immune responses and be applicable to allergic asthma.