Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.203

Differential Sensitivity of Wild-Type and BRAF-Mutated Cells to Combined BRAF and Autophagy Inhibition  

Yeom, Hojin (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Hwang, Sung-Hee (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Han, Byeal-I (Institute for New Drug Development, Incheon National University)
Lee, Michael (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Publication Information
Biomolecules & Therapeutics / v.29, no.4, 2021 , pp. 434-444 More about this Journal
Abstract
BRAF inhibitors are insufficient monotherapies for BRAF-mutated cancer; therefore, we investigated which inhibitory pathway would yield the most effective therapeutic approach when targeted in combination with BRAF inhibition. The oncogenic BRAF inhibitor, PLX4720, increased basal autophagic flux in BRAF-mutated cells compared to wild-type (WT) BRAF cells. Interestingly, early autophagy inhibition improved the effectiveness of PLX4720 regardless of BRAF mutation, whereas late autophagy inhibition did not. Although ATG5 knockout led to PLX4720 resistance in both WT and BRAF-mutated cells, the MEK inhibitor trametinib exhibited a synergistic effect on PLX4720 sensitivity in WT BRAF cells but not in BRAF-mutated cells. Conversely, the prolonged inhibition of endoplasmic reticulum (ER) stress reduced basal autophagy in BRAF-mutated cells, thereby increasing PLX4720 sensitivity. Taken together, our results suggest that the combined inhibition of ER stress and BRAF may simultaneously suppress both pro-survival ER stress and autophagy, and may therefore be suitable for treatment of BRAF-mutated tumors whose autophagy is increased by chronic ER stress. Similarly, for WT BRAF tumors, therapies targeting MEK signaling may be a more effective treatment strategy. Together, this study presents a rational combination treatment strategy to improve the efficacy of BRAF inhibitors depending on BRAF mutation status.
Keywords
BRAF; Autophagy; Mutation; Melanoma; TFEB; Cancer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Settembre, C., Zoncu, R., Medina, D. L., Vetrini, F., Erdin, S., Erdin, S., Huynh, T., Ferron, M., Karsenty, G., Vellard, M. C., Facchinetti, V., Sabatini, D. M. and Ballabio, A. (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108.   DOI
2 Sullivan, R. J., Hollebecque, A., Flaherty, K. T., Shapiro, G. I., Ahnert, J. R., Millward, M. J., Zhang, W., Gao, L., Sykes, A., Willard, M. D., Yu, D., Schade, A. E., Crowe, K., Flynn, D. L., Kaufman, M. D., Henry, J. R., Peng, S. B., Benhadji, K. A., Conti, I., Gordon, M. S., Tiu, R. V. and Hong, D. S. (2020) A phase I study of LY3009120, a pan-RAF inhibitor, in patients with advanced or metastatic cancer. Mol. Cancer Ther. 19, 460-467.   DOI
3 Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., Chen, C., Zhang, X., Vincent, P., McHugh, M., Cao, Y., Shujath, J., Gawlak, S., Eveleigh, D., Rowley, B., Liu, L., Adnane, L., Lynch, M., Auclair, D., Taylor, I., Gedrich, R., Voznesensky, A., Riedl, B., Post, L. E., Bollag, G. and Trail, P. A. (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099-7109.   DOI
4 Xie, X., Koh, J. Y., Price, S., White, E. and Mehnert, J. M. (2015) Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov. 5, 410-423.   DOI
5 Kouraklis, G. and Theocharis, S. (2006) Histone deacetylase inhibitors: a novel target of anticancer therapy (review). Oncol. Rep. 15, 489-494.
6 Yang, A., Rajeshkumar, N. V., Wang, X., Yabuuchi, S., Alexander, B. M., Chu, G. C., Von Hoff, D. D., Maitra, A. and Kimmelman, A. C. (2014) Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905-913.   DOI
7 Zahedi, S., Fitzwalter, B. E., Morin, A., Grob, S., Desmarais, M., Nellan, A., Green, A. L., Vibhakar, R., Hankinson, T. C., Foreman, N. K. and Mulcahy Levy, J. M. (2019) Effect of early-stage autophagy inhibition in BRAFV600E autophagy-dependent brain tumor cells. Cell Death Dis. 10, 679.   DOI
8 Zhang, Z., Singh, R. and Aschner, M. (2016) Methods for the detection of autophagy in mammalian cells. Curr. Protoc. Toxicol. 69, 20.12.1-20.12.26.
9 Zhitomirsky, B., Yunaev, A., Kreiserman, R., Kaplan, A., Stark, M. and Assaraf, Y. G. (2018) Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis. 9, 1191.   DOI
10 Mulcahy Levy, J. M., Zahedi, S., Griesinger, A. M., Morin, A., Davies, K. D., Aisner, D. L., Kleinschmidt-DeMasters, B. K., Fitzwalter, B. E., Goodall, M. L., Thorburn, J., Amani, V., Donson, A. M., Birks, D. K., Mirsky, D. M., Hankinson, T. C., Handler, M. H., Green, A. L., Vibhakar, R., Foreman, N. K. and Thorburn, A. (2017) Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. eLife 6, e19671.   DOI
11 Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., Bremer, R., Gillette, S., Kong, J., Haass, N. K., Sproesser, K., Li, L., Smalley, K. S., Fong, D., Zhu, Y. L., Marimuthu, A., Nguyen, H., Lam, B., Liu, J., Cheung, I., Rice, J., Suzuki, Y., Luu, C., Settachatgul, C., Shellooe, R., Cantwell, J., Kim, S. H., Schlessinger, J., Zhang, K. Y., West, B. L., Powell, B., Habets, G., Zhang, C., Ibrahim, P. N., Hirth, P., Artis, D. R., Herlyn, M. and Bollag, G. (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent anti-melanoma activity. Proc. Natl. Acad. Sci. U.S.A. 105, 3041-3046.   DOI
12 Cheng, L., Lopez-Beltran, A., Massari, F., MacLennan, G. T. and Montironi, R. (2018) Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod. Pathol. 31, 24-38.   DOI
13 Davies, H., Bignell, G., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R. and Futreal, P. A. (2002) Mutations of the B-Raf gene in human cancer. Nature 417, 949-954.   DOI
14 Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B. J., Anderson, D. J., Alvarado, R., Ludlam, M. J., Stokoe, D., Gloor, S. L., Vigers, G., Morales, T., Aliagas, I., Liu, B., Sideris, S., Hoeflich, K. P., Jaiswal, B. S., Seshagiri, S., Koeppen, H., Belvin, M., Friedman, L. S. and Malek, S. (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431-435.   DOI
15 Ahn, J. H. and Lee, M. (2013) Autophagy-dependent survival of mutant B-Raf melanoma cells selected for resistance to apoptosis induced by inhibitors against oncogenic B-Raf. Biomol. Ther. (Seoul) 21, 114-120.   DOI
16 Algazi, A. P., Othus, M., Daud, A. I., Lo, R. S., Mehnert, J. M., Truong, T. G., Conry, R., Kendra, K., Doolittle, G. C., Clark, J. I., Messino, M. J., Moore, D. F., Jr., Lao, C., Faller, B. A., Govindarajan, R., Harker-Murray, A. H., Dreisbach, L., Moon, J., Grossmann, K. F. and Ribas, A. (2020) Continuous versus intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: a randomized phase 2 trial. Nat. Med. 26, 1564-1568.   DOI
17 Cantwell-Dorris, E. R., O'Leary, J. J. and Sheils, O. M. (2011) BRAFV600E: implications for carcinogenesis and molecular therapy. Mol. Cancer Ther. 10, 385-394.   DOI
18 Choi, K. S. (2012) Autophagy and cancer. Exp. Mol. Med. 44, 109-120.   DOI
19 Corazzari, M., Fimia, G. M., Lovat, P. and Piacentini, M. (2013) Why is autophagy important for melanoma? Molecular mechanisms and therapeutic implications. Semin. Cancer Biol. 23, 337-343.   DOI
20 Chou, T. C. (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440-446.   DOI
21 Dinter, L., Karitzky, P., Kaeubler, T., Niessner, H., Wanke, I., Beissert, S., Meier, F. and Westphal, D. (2019) BRAF/MEK inhibitors induce potent ER stress - Enforced apoptosis in BRAFwt/NRASmut melanoma cells - Insights into mode of action and resistance mechanisms. In: Proceedings of the 16th International Congress of the Society for Melanoma Research, p. 102, 2019 Nov 20-21. The Society for Melanoma Research, Salt Lake City, UT, USA.
22 Egan, D. F., Chun, M. G., Vamos, M., Zou, H., Rong, J., Miller, C. J., Lou, H. J., Raveendra-Panickar, D., Yang, C. C., Sheffler, D. J., Teriete, P., Asara, J. M., Turk, B. E., Cosford, N. D. and Shaw, R. J. (2015) Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285-297.   DOI
23 Eisen, T., Ahmad, T., Flaherty, K. T., Gore, M., Kaye, S., Marais, R., Gibbens, I., Hackett, S., James, M., Schuchter, L. M., Nathanson, K. L., Xia, C., Simantov, R., Schwartz, B., Poulin-Costello, M., O'Dwyer, P. J. and Ratain, M. J. (2006) Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer 95, 581-586.   DOI
24 Holderfield, M., Deuker, M. M., McCormick, F. and McMahon, M. (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455-467.   DOI
25 Li, S., Song, Y., Quach, C., Guo, H., Jang, G. B., Maazi, H., Zhao, S., Sands, N. A., Liu, Q., In, G. K., Peng, D., Yuan, W., Machida, K., Yu, M., Akbari, O., Hagiya, A., Yang, Y., Punj, V., Tang, L. and Liang, C. (2019) Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat. Commun. 10, 1693.   DOI
26 Hwang, S. H., Han, B. I. and Lee, M. (2018) Knockout of ATG5 leads to malignant cell transformation and resistance to Src family kinase inhibitor PP2. J. Cell. Physiol. 233, 506-515.   DOI
27 Ichimiya, T., Yamakawa, T., Hirano, T., Yokoyama, Y., Hayashi, Y., Hirayama, D., Wagatsuma, K., Itoi, T. and Nakase, H. (2020) Autophagy and autophagy-related diseases: a review. Int. J. Mol. Sci. 21, 8974.   DOI
28 Kim, N. Y., Han, B. I. and Lee, M. (2016) Cytoprotective role of autophagy against BH3 mimetic gossypol in ATG5 knockout cells generated by CRISPR-Cas9 endonuclease. Cancer Lett. 370, 19-26.   DOI
29 Luebker, S. A. and Koepsell, S. A. (2019) Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front. Oncol. 9, 268.   DOI
30 Ma, X. H., Piao, S. F., Dey, S., McAfee, Q., Karakousis, G., Villanueva, J., Hart, L. S., Levi, S., Hu, J., Zhang, G., Lazova, R., Klump, V., Pawelek, J. M., Xu, X., Xu, W., Schuchter, L. M., Davies, M. A., Herlyn, M., Winkler, J., Koumenis, C. and Amaravadi, R. K. (2014) Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J. Clin. Invest. 124, 1406-1417.   DOI
31 Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. and Rosen, N. (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427-430.   DOI
32 Piao, S. and Amaravadi, R. K. (2016) Targeting the lysosome in cancer. Ann. N. Y. Acad. Sci. 1371, 45-54.   DOI
33 Pisapia, P., Pepe, F., Iaccarino, A., Sgariglia, R., Nacchio, M., Russo, G., Gragnano, G., Malapelle, U. and Troncone, G. (2020) BRAF: a two-faced Janus. Cells 9, 2549.   DOI
34 Poklepovic, A. and Gewirtz, D. A. (2014) Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy 10, 1478-1480.   DOI
35 Rather, R. A., Bhagat, M. and Singh, S. K. (2020) Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: crosstalk and therapeutic targets in cutaneous melanoma. Mutat. Res. 785, 108321.   DOI
36 Settembre, C., Di Malta, C., Polito, V. A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S. U., Huynh, T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D. C. and Ballabio, A. (2011) TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433.   DOI
37 Levy, J. M., Thompson, J. C., Griesinger, A. M., Amani, V., Donson, A. M., Birks, D. K., Morgan, M. J., Mirsky, D. M., Handler, M. H., Foreman, N. K. and Thorburn, A. (2014) Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov. 4, 773-780.   DOI
38 Kinsey, C. G., Camolotto, S. A., Boespflug, A. M., Guillen, K. P., Foth, M., Truong, A., Schuman, S. S., Shea, J. E., Seipp, M. T., Yap, J. T., Burrell, L. D., Lum, D. H., Whisenant, J. R., Gilcrease, G. W. r., Cavalieri, C. C., Rehbein, K. M., Cutler, S. L., Affolter, K. E., Welm, A. L., Welm, B. E., Scaife, C. L., Snyder, E. L. and McMahon, M. (2019) Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 620-627.   DOI
39 Lai, F., Guo, S. T., Jin, L., Jiang, C. C., Wang, C. Y., Croft, A., Chi, M. N., Tseng, H. Y., Farrelly, M., Atmadibrata, B., Norman, J., Liu, T., Hersey, P. and Zhang, X. D. (2013) Cotargeting histone deacetylases and oncogenic BRAF synergistically kills human melanoma cells by necrosis independently of RIPK1 and RIPK3. Cell Death Dis. 4, e655.   DOI
40 Kimura, S., Noda, T. and Yoshimori, T. (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460.   DOI
41 Lito, P., Rosen, N. and Solit, D. B. (2013) Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 19, 1401-1409.   DOI
42 Liu, H., He, Z. and Simon, H. U. (2014) Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy 10, 372-373.   DOI