• Title/Summary/Keyword: Stress Cycle Analysis

Search Result 392, Processing Time 0.026 seconds

Effect of Thermal Cycle on Strength of Ceramic and Metal Joint (세라믹/금속접합재의 강도에 미치는 열사이클 영향)

  • 박영철;오세욱;김광영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1664-1673
    • /
    • 1994
  • As a fundamental study on effects of thermal-cycles on residual stress of ceramics/metal joints, residual stresses in $Si_3N_4$/SUS304 joint specimens were measured before and single thermal-cycle by X-ray diffraction method and finite element method(FEM). The residual stress was found to increase after single thermal-cycle, which was agreeable with the results of residual stress measurement by X-ray diffraction method and residual stress analysis by finite element method. After the residual stress measurement, 4-point bending tests were performed. The relationship between the bending strength, the thermal-cycle temperature and hold time was examined. The bending strength was found to decrease with the increase of residual stress in linear relation.

A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures (차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구)

  • 이상범;박태원;임홍재
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.686-691
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures (차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구)

  • Lee, Sang-Beom;Park, Tae-Won;Park, Jong-Sung;Lee, Sun-Byung;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1883-1888
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

Unsteady heat transfer and thermal stress analysis of a gasoline engine cylinder head (실린더 헤드의 비정상 열전달 및 열응력 해석)

  • 박진무;임영훈;김병탁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • In this study are determined the unsteady temperature and thermal stress fields for a domestic 4-cylinder, 4-cycle gasoline engine cylinder head by the three-dimensional finite element method. A representative part of the cylinder head is modelled as a combination of hexahedron isoparametric elements, and the time-dependent temperature and the heat transfer coefficient of the gas are imposed as the thermal boundary conditions for the engine speeds of 500 rpm and 2000 rpm. The obtained results, which are represented graphically, indicate that the amplitudes of temperature fluctuation during a cycle are about 10.deg. C and 3.deg. C respectively on the surface of combustion chamber, and the maximum temperature fields occur at 30.deg. , 10.deg. respectively before the initiation of the exhaust stroke. Thermal stress fields due to non-uniform temperature distributions show that compressive stress is much larger than tensile stress throughout a cycle. It is also found that the compressive stress varies with substantial amplitude between the exhaust port and ignition plug hole, and the high tensile stress with small fluctuation occurs between exhaust port and the adjacent head bolt hole.

  • PDF

DURABILITY IMPROVEMENT OF A CYLINDER HEAD IN CONSIDERATION OF MANUFACTURING PROCESS

  • Kim, B.;Chang, H.;Lee, K.;Kim, C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.243-248
    • /
    • 2007
  • The durability of a cylinder head is influenced by the thermal and mechanical history during the manufacturing process, as well as engine operation. In order to improve the durability of cylinder head, both load from engine operation and the preload conditions from the manufacturing process must be considered. The aluminum cylinder head used for a HSDI diesel engine is investigated to reduce the possibility of high cycle fatigue crack in this study. FE analysis is performed to elucidate the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. Two separate approaches to increase the durability of the cylinder head are discussed: reducing load from engine operation and re-arranging preload conditions from the manufacturing process at the critical location of the cylinder head. Local design changes of the cylinder head and modification of pretension load in the cylinder head bolt were investigated using FE analysis to relieve load at the critical location during engine operation. Residual stress formed at the critical location during the manufacturing process is measured and heat treatment parameters are changed to re-arrange the distribution of residual stress. Results of FE analysis and experiments showed that thorough consideration of the manufacturing process is necessary to enhance the durability of the cylinder head.

Contact Fatigue Life Prediction under Elliptical Elastohydrodynamic Lubrication (타원접촉 EHL 상태에서의 접촉피로수명 예측)

  • Kim, Tae-Wan;Lee, Sang-Don;Koo, Young-Pil;Cho, Yang-Joo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.320-328
    • /
    • 2006
  • In this study, the simulation of rolling contact fatigue based on stress analysis is conducted under Elastohydrodynamic Lubrication state. To predict a crack initiation life accurately, it is necessary to calculate contact stress and subsurface stresses accurately. Contact stresses are obtained by contact analysis of a semi-infinile solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. And a numerical algorithm using Newton-Rapson method was constructed to calculate the Elastohydrodynamic lubrication pressure. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated.

Fatigue Life Analysis of Composite Materials (복합재료의 피로수명 해석)

  • 이창수;황운봉;박현철;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.268-271
    • /
    • 1999
  • Fatigue life Prediction is investigated analytically based on the fatigue modulus concept. Fatigue modulus degradation rate at any fatigue cycle was assumed as a power function of number of fatigue cycles. New stress function describing the relation of initial fatigue modulus and elastic modulus was used to account for material non-linearity at the first cycle. It was assumed that fatigue modulus at failure is proportional to applied stress level. A new fatigue life prediction equation as a function of applied stress is proposed. The prediction was verified experimentally using cross-ply carbon/epoxy laminate (CFRP) tube.

  • PDF

Finite Element Based Stress Concentration Factors for Pipes with Local Wall Thinning (유한요소해석을 이용한 국부 감육배관에 대한 응력집중계수 제시)

  • Son, Beom-Goo;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1014-1020
    • /
    • 2004
  • The present work complies the elastic stress concentration factor for a pipe with local wall thinning, based on detailed three-dimensional elastic FE analysis. To cover practically interesting cases, a wide range of pipe and defect geometries are considered, and both internal pressure and global bending are considered. Resulting values of stress concentration factors are tabulated for practical use, and the effect of relevant parameters such as pipe and defect geometries on stress concentration factors are discussed. The present results would provide valuable information to estimate fatigue damage of the pipe with local wall thinning under high cycle fatigue.

Analysis of Elastic-Plastic Stress Fields near the Crack Tip under Tension-Compression Loading (인장-압축 하중 하의 균열선단의 탄.소성 응력해석)

  • 석창성;김수용;김동중;안하늘;박은수;원종일
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 1999
  • In this study, theoretical stress field analysis near the crack tip under tension-compression loading was performed. The results of the theoretical stress analysis were compared to the results of Finite Element Method(FEM). From this study, generation of tensile residual stress at crack tip was proved after 1-cycle of tension-compression loading, and the fracture toughness and the fracture load of a structure can be decreased by the residual stress.

  • PDF

Psychological Wellbeing across the Family Life Cycle based on Bioecological Family Welfare Model (생태학적 가족복지모형을 적용한 가족생활주기에 따른 심리적 복지)

  • Jeon, Hyo-Jeong
    • Journal of the Korean Home Economics Association
    • /
    • v.45 no.5
    • /
    • pp.121-133
    • /
    • 2007
  • The purpose of this study was to investigate the psychological wellbeing as applied to the bioecological family life welfare model, concerning individual attributes, family backgrounds, and family processes across the family life cycles. Based on Bronfenbrenner's bioecological perspective, the "bioecological family welfare model", which includes person (individual attributes), context (family background), process (mechanism - family process), and time (the family life cycles), was applied as a research paradigm for this study. The sample for the questionnaire study comprised for 900 families, considering the family life cycle in Busan and the Kyungnam area. The families were categorized into 6 family life cycles based on Duvall and Hill's family life cycle. For the final analysis, 628 families were used. According to the path analysis results, the length of commitment before marriage and self-esteem had significant effects on the stress coping ability. Several individual attributes and family backgrounds such as age, length of marriage, family life cycle, self-esteem and stress coping ability had significant effects on marital adjustment. The family life cycle and age were significant variables on family function. The significant variables on psychological wellbeing were monthly income, length of commitment before marriage, stress coping ability and marital adjustment. The regression model showed that the variables of the individual attributes, context and family process accounted for 51% of the psychological wellbeing. The results show that the suggested research model was significant and effective to explain the mechanism of psychological wellbeing. Individual attributes and family context have an impact on stress coping, marital adjustment, and family function, which in turn affect psychological wellbeing.