• 제목/요약/키워드: Stress Components

검색결과 1,738건 처리시간 0.022초

쇼트피닝 가공한 스프링강의 고온 피로 파괴 특성에 관한 연구 (Characteristics of High Temperature Fatigue Fracture in Spring Steels after Shot Peening)

  • 박경동;신영진
    • 한국안전학회지
    • /
    • 제21권4호
    • /
    • pp.1-6
    • /
    • 2006
  • The lightness of components that was required in automobile and machinery industry requires high strength of components. In particular, manufacturing process and new materials development for solving the fatigue facture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9)by shot-peening on fatigue crack growth characteristics in high temperature($100^{\circ}C,\;150^{\circ}C,\;180^{\circ}C$)was investigated with considering fracture mechanics. So, we can obtaint the followings. (1) Compressive residual stress is decreased with increasing the test temperature. (2) The effect of compressive residual stress on fatigue crack growth behavior in high temperature is increased below ${\Delta}K=17{\sim}19MPa{\sqrt{m}}$. (3) It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

경호업 종사자의 직무형태와 스트레스 수준에 따른 신체구성, 대사적 변인, 혈액성분의 차이 연구 (Study on the Difference of Body Composition, Metabolic Factor, and Blood Components according to Job Form and Stress Level for Security Guard Workers)

  • 김경태;이창한
    • 시큐리티연구
    • /
    • 제22호
    • /
    • pp.1-14
    • /
    • 2010
  • 본 연구는 서울, 경기지역 소재 경호업체 종사자를 대상으로 직무형태의 하위요인인 근무경력과 직무유형과 스트레스 수준에 따른 생리학적 변화를 비교, 분석한 결과 다음과 같은 결론을 얻었다. 1. 근무경력에 따라 체지방률은 단기간일수록 낮고, 장기간일수록 젖산수준은 높다. 2. 직무유형에 따라 체지방률은 현장직일수록 낮고, 젖산과 스트레스 수준은 현장직일수록 높다. 결론적으로, 경호업 종사자의 효율적이고 건강측면에서의 관리를 위해서는 장기근속과 사무직 종사자의 지속적인 신체활동 수행이 필요하고, 현장직 종사자는 신체적, 정신적 스트레스 감소를 위한 휴식 및 안정이 요구되어진다.

  • PDF

NONDESTRUCTIVE/IN-FIELD CHARACTERIZATION OF TENSILE PROPERTIES AND RESIDUAL STRESS OF WELDED STRUCTURES USING ADVANCED INDENTATION TECHNIQUE

  • Park, Yeol;Dongil Son;Kim, Kwang-Ho;Park, S. Joon;Jang, Jae-il;Dongil Kwon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.668-674
    • /
    • 2002
  • Structural integrity assessment is indispensable for preventing catastrophic failure of industrial structures/components/facilities. This diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive and complex procedure of specimen sampling. Especially, the mechanical properties at welded zone including weldment and heat affected zone could not be evaluated individually due to their size requirement problem. So, an advanced indentation technique has been developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. Also indentation technique can evaluate a residual stress based on the concept that indentation load-depth curves were shifted with the direction and the magnitude of residual stress applied to materials. In this study, we characterized the tensile properties and welding residual stress of various industrial facilities through the new techniques, and the results are introduced and discussed.

  • PDF

Three-dimensional finite element analysis of implant-supported crown in fibula bone model

  • Park, Young-Seok;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.326-332
    • /
    • 2013
  • PURPOSE. The purpose of this study was to compare stress distributions of implant-supported crown placed in fibula bone model with those in intact mandible model using three-dimensional finite element analysis. MATERIALS AND METHODS. Two three-dimensional finite element models were created to analyze biomechanical behaviors of implant-supported crowns placed in intact mandible and fibula model. The finite element models were generated from patient's computed tomography data. The model for grafted fibula was composed of fibula block, dental implant system, and implant-supported crown. In the mandible model, same components with identical geometries with the fibula model were used except that the mandible replaced the fibula. Vertical and oblique loadings were applied on the crowns. The highest von Mises stresses were investigated and stress distributions of the two models were analyzed. RESULTS. Overall stress distributions in the two models were similar. The highest von Mises stress values were higher in the mandible model than in the fibula model. In the individual prosthodontic components there was no prominent difference between models. The stress concentrations occurred in cortical bones in both models and the effect of bicortical anchorage could be found in the fibula model. CONCLUSION. Using finite element analysis it was shown that the implant-supported crown placed in free fibula graft might function successfully in terms of biomechanical behavior.

플립칩 패키지 구성 요소의 열-기계적 특성 평가 (Thermo-Mechanical Interaction of Flip Chip Package Constituents)

  • 박주혁;정재동
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.183-190
    • /
    • 2003
  • Major device failures such as die cracking, interfacial delamination and warpage in flip chip packages are due to excessive heat and thermal gradients- There have been significant researches toward understanding the thermal performance of electronic packages, but the majority of these studies do not take into account the combined effects of thermo-mechanical interactions of the different package constituents. This paper investigates the thermo-mechanical performance of flip chip package constituents based on the finite element method with thermo-mechanically coupled elements. Delaminations with different lengths between the silicon die and underfill resin interfaces were introduced to simulate the defects induced during the assembly processes. The temperature gradient fields and the corresponding stress distributions were analyzed and the results were compared with isothermal case. Parametric studies have been conducted with varying thermal conductivities of the package components, substrate board configurations. Compared with the uniform temperature distribution model, the model considering the temperature gradients provided more accurate stress profiles in the solder interconnections and underfill fillet. The packages with prescribed delaminations resulted in significant changes in stress in the solder. From the parametric study, the coefficients of thermal expansion and the package configurations played significant roles in determining the stress level over the entire package, although they showed little influence on stresses profile within the individual components. These observations have been implemented to the multi-board layer chip scale packages (CSP), and its results are discussed.

섬유산업 종사자친 섬유산업에 대한 태도 분석 (Analysis of Workers' Attitudes toward Textile Industry)

  • 유화숙;박광희
    • 한국의류학회지
    • /
    • 제28권7호
    • /
    • pp.916-926
    • /
    • 2004
  • The purpose of this study was to examine the workers' attitudes toward textile industry. Also the attitude was investigated how to be correlated to job stress symptoms and job performance. The data were obtained from questionnaire completed by 529 workers employed in textile or clothing companies. The SPSS package was used for data analysis which included t-test, ANOVA, mean, correlation, and factor analysis. The results showed that workers' attitudes toward textile industry were neither positive nor negative. The attitudes revealed to be divided into two components-cognition, affect/behavioral intention. Cognitive attitude was observed to be more positive than affective/behavioral intention attitude. The attitude differed according to personal characteristics such as sex, educational status, position, period of one's service, types of industry and job specifications. The attitude were correlated with job stress symptoms and job performance. The more positive the workers' attitudes were, the lesser job stress symptoms and the higher job performance were. As the two components of the attitudes are in the same way, the attitude toward textile industry exhibited to have higher correlation with job stress symptoms and job performance.

RCC-MR 코드에 기반한 ITER 시험증식블랑켓 일차벽 설계 (First Wall Design of ITER Test Blanket Module(TBM) based on RCC-MR Code)

  • 신규인;이동원
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.14-19
    • /
    • 2012
  • The Helium cooled ceramic reflector(HCCR) test blanket module(TBM) has been designed and developed to participate the ITER(International Thermonuclear Experimental Reactor) test blanket program in Korea. The TBM was one of the main objectives for developing ITER for proving the tritium self-sufficiency and the heat transfers to produce the electricity with the breeding blanket concept. Among the TBM components, the first wall(FW) was the most important component in safety since it was directly faced a high level of a heat and fast neutrons from the plasma side and could protect the others components inside TBM. In this paper, the FW has been designed through the thermo-mechanical analysis considering ITER operation conditions. With the developed simple models, the stress limit analysis based on RCC-MR code which is the nuclear power plant design codes in France was evaluated for the allowable design criteria. The results showed that the designed FW model satisfied $1.5S_m$ or $3S_m$ of the allowable stress($S_m$) in RCC-MR code at the maximum stress region in the FW.

EVALUATION OF PRIMARY WATER STRESS CORROSION CRACKING GROWTH RATES BY USING THE EXTENDED FINITE ELEMENT METHOD

  • LEE, SUNG-JUN;CHANG, YOON-SUK
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.895-906
    • /
    • 2015
  • Background: Mitigation of primary water stress corrosion cracking (PWSCC) is a significant issue in the nuclear industry. Advanced nickel-based alloys with lower susceptibility have been adopted, although they do not seem to be entirely immune from PWSCC during normal operation. With regard to structural integrity assessments of the relevant components, an accurate evaluation of crack growth rate (CGR) is important. Methods: For the present study, the extended finite element method was adopted from among diverse meshless methods because of its advantages in arbitrary crack analysis. A user-subroutine based on the strain rate damage model was developed and incorporated into the crack growth evaluation. Results: The proposed method was verified by using the well-known Alloy 600 material with a reference CGR curve. The analyzed CGR curve of the alternative Alloy 690 material was then newly estimated by applying the proven method over a practical range of stress intensity factors. Conclusion: Reliable CGR curves were obtained without complex environmental facilities or a high degree of experimental effort. The proposed method may be used to assess the PWSCC resistance of nuclear components subjected to high residual stresses such as those resulting from dissimilar metal welding parts.

An evaluation of the stress effect of different occlusion concepts on hybrid abutment and implant supported monolithic zirconia fixed prosthesis: A finite element analysis

  • Yesilyurt, Nilgün Gulbahce;Tuncdemir, Ali Riza
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권4호
    • /
    • pp.216-225
    • /
    • 2021
  • PURPOSE. The aim of this study is to evaluate the effects of canine guidance occlusion and group function occlusion on the degree of stress to the bone, implants, abutments, and crowns using finite element analysis (FEA). MATERIALS AND METHODS. This study included the implant-prosthesis system of a three-unit bridge made of monolithic zirconia and hybrid abutments. Three-dimensional (3D) models of a bone-level implant system and a titanium base abutment were created using the original implant components. Two titanium implants, measuring 4 × 11 mm each, were selected. The loads were applied in two oblique directions of 15° and 30° under two occlusal movement conditions. In the canine guidance condition, loads (100 N) were applied to the canine crown only. In the group function condition, loads were applied to all three teeth. In this loading, a force of 100 N was applied to the canine, and 200-N forces were applied to each premolar. The stress distribution among all the components of the implant-bridge system was assessed using ANSYS SpaceClaim 2020 R2 software and finite element analysis. RESULTS. Maximum stress was found in the group function occlusion. The maximum stress increased with an increase in the angle of occlusal force. CONCLUSION. The canine guidance occlusion with monolithic zirconia crown materials is promising for implant-supported prostheses in the canine and premolar areas.

REDUCED DIFFERENTIAL TRANSFORM FOR THERMAL STRESS ANALYSIS UNDER 2-D HYPERBOLIC HEAT CONDUCTION MODEL WITH LASER HEAT SOURCE

  • SUTAR, CHANDRASHEKHAR S.;CHAUDHARI, KAMINI K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권2호
    • /
    • pp.54-65
    • /
    • 2021
  • In this study, a two-dimensional thermoelastic problem under hyperbolic heat conduction theory with an internal heat source is considered. The general solution for the temperature field, stress components and displacement field are obtained using the reduced differential transform method. The stress and displacement components are obtained using the thermal stress function in the reduced differential transform domain. All the solutions are obtained in the form of power series. The special case with a time-dependent laser heat source has been considered. The problem is considered for homogeneous material with finite rectangular cross-section heated with a non-Gaussian temporal profile. The effect of the heat source on all the characteristics of a material is discussed numerically and graphically for magnesium material taking a pulse duration of 0.2 ps. This study provides a powerful tool for finding the solution to the thermoelastic problem with less computational work as compared to other methods. The result obtained in the study may be useful for the investigation of thermal characteristics in engineering and industrial applications.