• 제목/요약/키워드: Stress Collapse

검색결과 189건 처리시간 0.021초

A finite element yield line model for the analysis of reinforced concrete plates

  • Rasmussen, L.J.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • 제6권4호
    • /
    • pp.395-409
    • /
    • 1998
  • This paper concerns the development and implementation of an orthotropic, stress resultant elasto-plastic finite element model for the collapse load analysis of reinforced concrete plates. The model implements yield line plasticity theory for reinforced concrete. The behaviour of the yield functions are studied, and modifications introduced to ensure a robust finite element model of cases involving bending and twisting stress resultants ($M_x$, $M_y$, $M_{xy}$). Onset of plasticity is always governed by the general yield-line-model (YLM), but in some cases a switch to the stress resultant form of the von Mises function is used to ensure the proper evolution of plastic strains. Case studies are presented, involving isotropic and orthotropic plates, to assess the behaviour of the yield line approach. The YLM function is shown to perform extremely well, in predicting both the collapse loads and failure mechanisms.

Borehole stability analysis in oil and gas drilling in undrained condition

  • Wei, Jian-Guang;Yan, Chuan-Liang
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.553-567
    • /
    • 2014
  • Borehole instability during drilling process occurs frequently when drilling through shale formation. When a borehole is drilled in shale formation, the low permeability leads to an undrained loading condition. The pore pressure in the compressed area near the borehole may be higher than the initial pore pressure. However, the excess pore pressure caused by stress concentration was not considered in traditional borehole stability models. In this study, the calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel's excess pore pressure theory. Combined with Mohr-Coulumb strength criterion, the calculation model of collapse pressure of shale in undrained condition is obtained. Furthermore, the variation of excess pore pressure and effective stress on the borehole wall is analyzed, and the influence of Skempton's pore pressure parameter on collapse pressure is also analyzed. The excess pore pressure decreases with the increasing of drilling fluid density; the excess pore pressure and collapse pressure both increase with the increasing of Skempton's pore pressure parameter. The study results provide a reference for determining drilling fluid density when drilling in shale formation.

토공구간 성토체의 Wetting Collapse에 관한 연구 (Wetting-Induced Collapse in Rock Fill Materials for Embankment)

  • 이성진;이일화;임은상;신동훈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1287-1296
    • /
    • 2007
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in about 400km section at 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing by several researchers(Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, with focusing in various soil/rock type, stress levels, wetting condition more closely.

  • PDF

A novel design method for improving collapse resistances of multi-story steel frames with unequal spans using steel braces

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Shi-chao Duan;Hong-chen Wang;Xing-You Yao;Yu-hui Zheng
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.253-267
    • /
    • 2023
  • The bearing capacities resisted by the two-bay beams of multi-story planar frames with unequal spans under column removal scenarios differ considerably owing to the asymmetric stress on the left and right beams connected to the failed column and cause the potential for beams with larger span-to-depth ratios to be unable to exert effectively, which is disadvantageous for resisting the vertical load in unequal-span frame structures. To address this problem, the structural measure of adding braces to the weak bays of multi-story unequal-span frames was proposed, with the objective of achieving a coordinated stress state in two-bay beams with unequal spans, thereby improving the collapse resistance of unequal-span frame structures. Before conducting the numerical simulation, the modeling methods were verified by previous experimental results of two multi-story planar frames with and without steel braces. Thereafter, the effects of the tensile and compressive braces on the collapse behavior of the frame structures were elucidated. Then, based on the mechanical action laws of the braces throughout the collapse process, a detailed design method for improving the collapse resistance of unequal-span frame structures was proposed. Finally, the proposed design method was verified by using sufficient example models, and the results demonstrated that the design method has good application prospects and high practical value.

편심압축하중을 받는 사각튜브의 최대압괴하중 (Maximum Crippling Load in Eccentrically Compressed rectangular Tubes)

  • 김천욱;한병기;정창현;김지홍
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.180-189
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Local buckling stress and maximum crippling load are investigated. A thin-walled tube under load is controlled by local buckling or yielding of material according to the ratio of thickness to width (t/b) of the cross section, and subsequent collapse of the section. The relationship can be divided into three regions : elastic , post-buckling and crippling . the load-displacement relationship is theoretically presented in each region by introducing the stress distribution of the cross section in the loading process. And the maximum load carrying capacity is derived in the closed form as a function of normal stress on the flange and web.

  • PDF

승용차 충돌을 고려한 가로등주 설계 (Design of a column for streetlamp considering the car crash)

  • 임재문;이광원
    • 자동차안전학회지
    • /
    • 제5권2호
    • /
    • pp.57-61
    • /
    • 2013
  • A column for streetlamp has been damaged by severe wind loads such as typhoon. The stress concentration around the inspection hole may cause the collapse of the column for streetlamp. In this paper, the effects due to the wind load of 60 m/s and the car crash to the column at the speed of 48 km/h were considered to examine the design stability analysis of the column for streetlamp. The maximum von Mises stress did not exceed the yield stress of the material. Considering the car crash, the column for streetlamp was not collapsed.

철근콘크리트 건물의 폭발하중에 의한 연쇄붕괴 해석을 위한 침식 기준 (Erosion Criteria for the Progressive Collapse Analysis of Reinforcement Concrete Structure due to Blast Load)

  • 김한수;안효승
    • 콘크리트학회논문집
    • /
    • 제26권3호
    • /
    • pp.335-342
    • /
    • 2014
  • 이 논문에서는 철근콘크리트 건물의 폭발하중에 의한 연쇄붕괴 해석을 위한 적합한 침식 기준값을 제안하였다. 침식은 기본적으로 대변형에 의한 오류나 해석의 갑작스러운 종료 등의 문제를 극복하기 위한 수치해석 기법이며 선행연구에서 폭발해석에서의 적합한 침식기준 값을 제안했었다. 하지만 콘크리트는 변형률 속도에 따라 다른 스트레스-스트레인 곡선을 갖는다. 따라서 실험 결과와 수치해석 결과를 비교함으로써 실제와 같은 연쇄붕괴 시뮬레이션에 적합한 침식기준 값을 제안하였다. 최종적으로 실제 붕괴가 일어났던 오클라호마 연방정부 건물을 두 결과 값의 중간 값을 적용하여 유사 해석을 진행하였다. 그 결과, 해석 결과는 실제 붕괴를 잘 묘사하고 있다.

횡구속 콘크리트의 압축 응력-변형률 모델 : Part I. 원형단면 부재 (Stress-Strain Model for Laterally Confined Concrete : Part I. Circular Sectional Members)

  • 선창호;정혁창;김익현
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.49-57
    • /
    • 2017
  • In order to avoid collapse of bridges in earthquakes bridge piers are generally designed to attain sufficient ductility. This full-ductility design method has merits for securing the seismic safety readily against strong earthquakes but, it has weakness of high cost design because of excessive safety margin. Recently, in many countries with high seismic technologies, the seismic design concept tends to shift from the collapse prevention design to the performance-based one which requires different performance (damage) levels according to the structural importance. In order to establish this performance-based design method the displacement ductility of confined concrete members should be evaluated quantitatively. And the stress-strain model of confined concrete is indispensible in evaluating displacement ductility. In this study, 6 test groups with different lateral reinforcement ratios were prepared. 10 same specimens with circular section for each group were tested to obtain more reliable test results. The characteristic values necessary for composing the stress-strain model were obtained from experiments. Based on these characteristic values the new stress-strain model modifying the Hoshikuma's one has been proposed.

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan;Wei-Hui Zhong;Bao Meng;Xing-You Yao;Yu-Hui Zheng;Yao Gao;Shi-Chao Duan
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.265-280
    • /
    • 2024
  • The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.

천연가스 수송용 API 5L X65 배관에 대한 소성붕괴해 (Plastic Collapse Solution for API 5L X65 Natural Gas Linepipe)

  • 김우식;심도준;최재붕;백종현
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1483-1491
    • /
    • 2004
  • To assess the integrity of the pipeline is the most important problem to be solved first of all for prevention of any fracture accident of the pipeline. As a result of exerting such efforts, a number of plastic collapse assessment equations have been suggested, however, the scope of using or applying such assessment equations has not been exactly defined. In this study, the case that a surface crack existed in the circumferential direction in the external side of the natural gas pipeline and a bending load was applied to the pipeline was analytically identified as the most critical condition, and a plastic collapse assessment equation fur it was suggested. The flow stress of the API X65 linepipe was defined through the experiment conducted on SENT specimens. Also, a local assessing criterion of a 3-dimensional crack behavior considering not only the crack depth but also the crack length was suggested. Finally, a plastic collapse assessment equation for the API X65 linepipe was developed by performing the 3-dimensional finite element analysis.