• Title/Summary/Keyword: Stress intensity factor

Search Result 1,227, Processing Time 0.026 seconds

Engineering Critical Assessement for an Independent Type-B LNG Cargo Tank (독립형 LNG 화물창의 공학적 결함 평가)

  • Jae Hoon Seo;Kyu-Sik Park;Inhwan Cha;Joonmo Choung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.213-221
    • /
    • 2023
  • The demand for Liquefied Natural Gas (LNG) carriers and LNG-fueled ships has significantly increased in recent years due to the sulfur-oxide emission regulations by the International Maritime Organization (IMO). The main goal of this paper is to introduce the process for the Engineering Critical Assessment (ECA) of IMO independent type-B cargo tanks made from 9% nickel alloy. A methodology proposed by the British Standard was used to conduct ECA for any structure with initial flaws. Based on this standard, a Matlab code was developed to perform ECA. Coarse mesh Finite Element Analysis (FEA) was performed on an independent type-B LNG cargo tank with a capacity of 15,000 m3. The location with the highest development of maximum principal stress was identified at the bottom of the cargo tank. Fine mesh FEA was performed to obtain the stress range required for ECA. The dynamic cargo tank loads used for FEA were determined using some ship rules presented by Det Norske Veritas. As a result of performing a 20-year long-term crack propagation analysis with a semi-elliptical surface crack, the fracture-to-yield ratio exceeded the Fracture Assessment Line (FAL) and some structural reinforcement was necessary. Performing a 15-day short-term crack propagation analysis, the fracture-to-yield ratio remained within the FAL, and no significant LNG leaks were expected. This paper is believed to provide a guide for performing ECA of LNG cargo tanks in the future by providing the basic theory and application sample necessary to perform ECA.

The effect of well inclination angle on sand production using FDM-FEM modelling; A case study: One of the oil fields in Iran

  • Nemat Nemati;Kamran Goshtasbi;Kaveh Ahangari;Reza Shirinabadi
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.107-123
    • /
    • 2024
  • The drilling angle of the well is an important factor that can affect the sand production process and make its destructive effects more severe or weaker. This study investigated the effect of different well angles on sand production for the Asmari Formation, located in one of the oil fields southwest of Iran. For this purpose, a finite difference model was developed for three types of vertical (90°), inclined (45°), and horizontal (0°) wells with casing and perforations in the direction of minimum and maximum horizontal stresses, then coupled with fluid flow. Here, finite element meshing was used, because the geometry of the model is so complex and the implementation of finite difference meshes is impossible or very difficult for such models. Using a combined FDM-FEM model with fluid flow, the sand production process in three different modes with different flow rates for the Asmari sandstone was investigated in this study. The results of numerical models show that the intensity of sand production is directly related to the in-situ stress state of the oil field and well drilling angle. Since the stress regime in the studied oil field is normal, the highest amount of produced sand was in inclined wells (especially wells drilled in the direction of minimum horizontal stress) and the lowest amount of sand production was related to vertical wellbore. Also, the Initiation time of sand production in inclined wells was much shorter than in other wellbores.

The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment (반복-굽힘 모멘트의 진폭에 따른 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전 거동)

  • Song, Sam-Hong;Kim, Cheol-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1277-1286
    • /
    • 2001
  • Aluminum 5052/Aramid Fiber Reinforced Plastic(Al5052/AFRP) laminates are applied to the fuselage-wing intersection. The Al5052/AFRP laminates suffer from the cyclic bending moment of variable amplitude during the service. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al5052/AFRP laminate was investigated in this study. Al5052/AFRP laminate composite consists of three thin sheets of Al5052 and two layers of unidirectional aramid fibers. The cyclic bending moment fatigue tests were performed with five different levels of bending moment. The shape and size of the delamination zone formed along the fatigue crack between Al5052 sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging mechanism and the delamination zone were studied. Fiber failures were not observed in the delamination zone in this study. It represents that the fiber bridging modification factor should turn out to increase and that the fatigue crack growth rate should decrease. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip.

반타원 표면균열의 피로성장 거동에 관한 연구

  • 최용식;양원호;방시항
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.916-922
    • /
    • 1986
  • This paper presents the preliminary results of an experimental study on surface crack growth under fatigue loadings. The objective of this paper is to assess the effect of the initial crack size on crack propagation behaviors. Transparent PMMA plate speciments with shallow circular arc notch were used. Crack growth behaviors were observed and measured in two directions by travelling microscopes. The fatigue crack initiated at the deepest part on the initial arc shaped notch and then propagated to depth direction as well as spreading gradually along the notch tip. A considerable number of cycles was needed until the depth crack spreaded to the surface notch tip. When the fatigue crack reached the surface notch tip the crack front became an approximate semi-ellipse, primary semi-elliptical crack. Test results suggest that the relationships between fatigue crack growth rate and stress intensity factor range in both directions can be expressed by power law (Paris) and that relationship in width direction depends upon the crack ratios a$_{1}$/b$_{1}$, of the primary semi-elliptical crack. The relationship between the nondimensional crack lengths in both directions can be represented as the formula: (a/t)$^{n}$ =B(2b/W+A) where n and A are constants and B is seems to be depended upon the crack ratio a$_{1}$/b$_{1}$.

A Study on the Local Strength Structural Analysis for Steel Yacht (강선요트의 국부강도 구조해석에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.155-159
    • /
    • 2005
  • Analysis target ship is not introduced yet in domestic as steel yacht that is getting into the spotlight by leisure life in Australia or Japan. Sailing yacht or Yacht for leisure time made of FRP into controlling power fare mainly and the design and made of latest fishing boat and something of domestic is consisting mainly. To need investigated for concept is various kinds overall strength as that use mainly steel wire material structurally of steel yacht by small crafts about Longi strength, Transe strength portion even of design safety factor at subject to do Rule's allowable stress enough stable structure accomplish. But it is assessment of part intensity that become refer to most in small size ship.

  • PDF

피로와 파괴력학(I)

  • 최용식
    • Journal of the KSME
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 1976
  • 재료의 피로문제에 대해서는 꽤 오래 전부터 많은 연구가 이루어져왔고, 피로의 현상파악에서부 터 피로이론의 구명, 나아가서는 실제문제로서의 피로설계, 피로수명예측 등에 기여한 업적은 아 주 크다 하겠다. 그러나 종래의 피로문제연구의 방향이, S-N 곡선에서 얻어지는 피로한계강도 (더 정확한 표현으론 피로파괴한계강동)에 바탕을 두고, 정력확적인 설계관례인 안전계수의 도입 을 빌려, 피로강도를 실용화할려는 선에서 이루어져 왔다고 보겠다. 재료의 피로한계강도란, 그 정의로 미루어, 다분히 정적으로는 극한강도 또는 피로강도의 개념에 견주어 질 수 있는 공칭응 력으로써 탄성학적으로 해석될 수도 없고, 다만 탄역성이론의 개념을 바탕으로 근사해석례만이 허용되고 있을 뿐이다. 재료에는 소위 평활재이건 절결재이건 간에 또 검출여부에 관계없이, 내외 부에 대소각종의 결함이나 역학적 불연속부가 잠재해있음은 이미 공지의 사실이며, 이들 결합, 불 연속부등이 외하중하에서 응분의 응력집중원이 되어 재료를 전반적인 파괴로 몰고 갈 수 있다 함 도, 또한 이러한 역학적거동이 피로파괴에 까지 확장해석될 수 있을 것이란 것도 이미 잘 알려져 있는 터이라 하겠다. 재료내외부의 제결합을 응력집중이 극대인 crack로 대체해서 외하중하에서 의 응력장거동을 해석한 선형탄성파괴역학(LEFM)은, 바로 이러한 실제재료의 강도설계에 보다 큰 정확성을 부여한 방법론적 학문이라 하겠고, 나아가서는 재료의 파괴기구를 파헤치는데 진일 보적인 역학적인 수법이라 하겠다. 취성파괴, 연성파괴에 바탕을 둔 파괴역학(LEFM)을 피로파괴 에 적용시키는 데는 상당한 문제점들을 수반할 것임은 충분히 인지되나, 제한된 경계조건하에서 의 적용 예는 종래의 어떤 방법에 의한 것 보다도 피로강도설계, 안전사용 피로수명예측 등에 획기적인 진전을 보여주고 있다. 파괴역학은 crack 재의 강도학이고, 더 구체적으로 음력학대계수 (stress intensity factor) K 또는 이와 연연되는 parameter 인 strain energy release rate(G), crack-tip plactic zone size r$_{p}$,.rho., crack-tip opening displacement .phi., strain intensity 등을 쓰는 재료강도학이기 때문에, 이 수법을 피로파괴에 적용시킴은, 종래의 공칭응력으로 피로 문제를 다루던 방법과는 판이하다 하겠다. 본고에선 파괴역학의 관점에서 피로구열의 안정성장을 논하고, 과거 10여년간의 피로 crack문제에 대한 연구방법, 실험방법 등을 소개하는 방향으로 고 를 진행시켜 나가겠다.

  • PDF

An Analytical Study on Crack Behavior Inside Standard Compact Tension Specimen with Holes (구멍들을 가진 표준 CT 시험편 내에서의 크랙 거동에 대한 해석적 연구)

  • Lee, Jung Ho;Cho, Jae Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.531-537
    • /
    • 2016
  • The damage and fracture of machine or structure are caused by the crack happened from the defect existed at the inside of material. The properties of crack propagation and growth characteristic must be considered because there are many cases at which these cracks are densely existed. Therefore, this study investigates the fracture property due to the position of crack and hole inside the standard compact tension (C. T.) specimen. When the concentrated load is applied eccentrically at the standard C. T. specimen, the fracture mechanical behavior due to the existence or non-existence and the position of hole near crack is investigated. As the result of analysis study, model 3 (in case of the distance of 2mm on the horizontal direction between the end part and hole as the specimen model existed with one hole near the crack) has the maximum deformation, stress and deformation energy of the most values among three models. As the distance between the crack and hole inside the specimen becomes nearer, the maximum stress becomes higher in cases of three models. Apart from the number of holes, it is seen that the maximum stress becomes higher near the crack when the hole exists near the crack inside the specimen. If the hole inside the machine or the mechanical structure is punctured by using the result of this study, it is thought that the occurred breakage or breakdown can be prevented by reducing the fracture stress happened at the specimen.

Effects of Light Intensity on the Growth Performance, Blood Parameter and Immune Status of Broiler Chicks (조도가 육계 병아리의 생산성, 혈액성상 및 면역 수준에 미치는 영향)

  • Kim, Hee-Jin;Son, Jiseon;Jeon, Jin-Joo;Kim, Hyun-Soo;You, Are-Sun;Kang, Hwan-Ku;Kang, Bo-Seok;Hong, Eui-Chul
    • Korean Journal of Poultry Science
    • /
    • v.48 no.3
    • /
    • pp.143-150
    • /
    • 2021
  • In this study, we investigated the effects of light intensity on broiler chick growth performance, blood parameters, and stress levels. A total of 240 one-day-old male Ross 308 broilers (47.97±0.166 g) were subjected to three different intensities of light (20, 30, and 50 lx), with each treatment being conducted with four replicates. On the seventh day, the growth performance (body weight, feed conversion ratio, and breast muscle and liver weights) and blood parameters were determined; the levels of serum corticosterone, interleukin-6 (IL-6), and tumor necrosis factor-α were also evaluated. The body weight, weight gain, liver weight, and breast muscle weight of chicks exposed to a light intensity of 50 lx were significantly increased compared with those of chicks subjected to 20 lx (P<0.05). No significant differences were observed in the leukocyte, erythrocyte, and platelet counts and the biochemical profile exceptions being the levels of glucose and inorganic phosphorus in the blood of the chicks in the three light intensity groups. However, serum corticosterone and IL-6 levels were the highest in chicks exposed to a light intensity of 20 lx (P<0.05). In conclusion, the findings of this study indicate that broiler chicks exposed to higher light intensity (50 lx) show significant improvements in terms of weight gain and corticosterone and IL-6 levels. Thus, high light intensities enhanced the growth performance, stress levels, and immune status of broiler chicks.

Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.)

  • Yoo, Sung-Yung;Lee, Yong-Ho;Park, So-Hyun;Choi, Kyong-Mi;Park, June-Young;Kim, A-Ram;Hwang, Su-Min;Lee, Min-Ju;Ko, Tae-Seok;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.659-664
    • /
    • 2013
  • The aim of this study is to determine the drought stress index through photochemical analysis in red pepper (Capsiumannuum L.). The photochemical interpretation was performed in the basis of the relation between Kautsky effect and Photosystem II (PSII) following the measurement of chlorophyll, pheophytin contents, and $CO_2$ assimilation in drought stressed 5-week-old red pepper plants. The $CO_2$ assimilation rate was severely lowered with almost 77% reduction of chlorophyll and pheophytin contents at four days after non-irrigation. It was clearly observed that the chlorophyll fluorescence intensity rose from a minimum level (the O level), in less than one second, to a maximum level (the P-level) via two intermediate steps labeled J and I (OJIP process). Drought factor index (DFI) was also calculated using measured OJIP parameters. The DFI was -0.22, meaning not only the initial inhibition of PSII but also sequential inhibition of PSI. In real, most of all photochemical parameters such as quantum yield of the electron transport flux from Quinone A ($Q_A$) to Quinone B ($Q_B$), quantum yield of the electron transport flux until the PSI electron acceptors, quantum yield of the electron transport flux until the PSI electron acceptors, average absorbed photon flux per PSII reaction center, and electron transport flux until PSI acceptors per cross section were profoundly reduced except number of QA reducing reaction centers (RCs) per PSII antenna chlorophyll (RC/ABS). It was illuminated that at least 6 parameters related with quantum yield/efficiency and specific energy fluxes (per active PSII RC) could be applied to be used as the drought stress index. Furthermore, in the combination of parameters, driving forces (DF) for photochemical activity could be deduced from the performance index (PI) for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors. In conclusion, photochemical responses and their related parameters can be used as physiological DFI.

The Shock and Fracture Analysis of Ship Structure Subject to Underwater Shock Loading (수중충격하중을 받는 선체구조의 충격 및 파손 해석)

  • Kie-Tae Chung;Kyung-Su Kim;Young-Bok Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.118-131
    • /
    • 1995
  • The shock fracture analysis for the structures of navy vessels subject to underwater explosions or of high speed vessels frequently subject to impact loads has been carried out in two steps such as the global or macro analysis and the fine or micro analysis. In the macro analysis, Doubly Asymptotic Approximation(DAA) has been applied. The three main failure modes of structure members subject to strong shock loading are late time fracture mode such as plastic large deformation mainly due to dynamic plastic buckling, and the early time fracture mode such as tensile tearing failure or transverse shear failure. In this paper, the tensile tearing failure mode is numerically analyzed for the micro analysis by calculating the dynamic stress intensity factor $K_I(t)$, which shows the relation between stress wave and crack propagation on the longitudinal stiffener of the model. Especially, in calculating this factor, the numerical caustic method developed from shadow optical method of caustic well known as experimental method is used. The fully submerged vessel is adopted for the macro analysis at first, of which the longitudinal stiffener, subject to early shock pressure time history calculated in macro analysis, is adopted for the micro analysis.

  • PDF