• Title/Summary/Keyword: Streptomyces species

Search Result 152, Processing Time 0.028 seconds

Antibiotics from Mushrooms (버섯의 항생물질(抗生物質))

  • Hwang, Byung-Ho
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.83-100
    • /
    • 2006
  • Antibiotics which produced by mushrooms discovered for last 40 years were described. Any antibiotic has not been used as infectious disease remudy but will be used as physiological active substance in near future. The antibiotic of mushrooms have not been published much in papers and do not have various finds of structures, compared to those of Streptomyces. Triple bond having compounds, terpenoid compounds aromatic compounds and some other compound have been known. These compounds are not dissolved well in water and mainly fat-soluble, except for cordycepin. Also, they are generally neutral, and some of them are acidic and almost none of them are basic compounds. However, acetylene and terpenoid compounds are the characteristic compounds of mushroom, and are not found in other microorganisms and plants. Especially, there are various terpenoid compounds in mushrooms. These metabolites of mushrooms were not used as antibiotic, but are interested as physiological active substance, such as enzyme inhibitor and immunomodulator. To promote studying on the antibiotics of mushroom, new screening methods must be developed, because strain belonged to the different genus produces different antibiotics, even though mushrooms belonged to the same genus and species. It is also known that mushrooms collected in different areas produce different antibiotics. Now, it is difficult to separate each pure compound from mushroom. It is important to find mushrooms which is impossible to cultivate artificially, or grow in the back land where is difficult to collect. Thousands of mushrooms grow on earth now, so that which species will be screened if not known. The biochemical and mycological study for usability of the metabolites of mushrooms is thought, as one of the important research areas, must be performed.

  • PDF

Species-Specific Cleavage by RNase E-Like Enzymes in 5S rRNA Maturation

  • RYOU SANG-MI;KIM JONG-MYUNG;YEOM JI-HYUN;KIM HYUN-LI;GO HA-YOUNG;SHIN EUN-KYOUNG;LEE KANGSEOK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1100-1105
    • /
    • 2005
  • Previous work has identified a Streptomyces coelicolor gene, rns, encoding a 140 kDa protein (RNase ES) that exhibits the endoribonucleolytic cleavage specificity characteristic of RNase E and confers viability on and allows the propagation of E. coli cells lacking RNase E. Here, we identify a putative S. coelicolor 9S rRNA sequence and sites cleaved by RNase ES. The cleavage of the S. coelicolor 9S rRNA transcript by RNase ES resulted in a 5S rRNA precursor (p5S) that had four and two additional nucleotides at the 5' end and 3' ends of the mature 5S rRNA, respectively. However, despite the similarities between RNase E and RNase ES, these enzymes could accurately process 9S rRNA from just their own bacteria, indicating that these ancient enzymes and the rRNA segments that they attack appear to have co-evolved.

Identification of Novel Non-Metal Haloperoxidases from the Marine Metagenome

  • Gwon, Hui-Jeong;Teruhiko, Ide;Shigeaki, Harayama;Baik, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.835-842
    • /
    • 2014
  • Haloperoxidase (HPO, E.C.1.11.1.7) is a metal-containing enzyme oxidizing halonium species, which can be used in the synthesis of halogenated organic compounds, for instance in the production of antimicrobial agents, cosmetics, etc., in the presence of halides and $H_2O_2$. To isolate and evaluate a novel non-metal HPO using a culture-independent method, a cassette PCR library was constructed from marine seawater in Japan. We first isolated a novel HPO gene from Pseudomonas putida ATCC11172 by PCR for constructing the chimeric HPO library (HPO11172). HPO11172 showed each single open-reading frame of 828 base pairs coding for 276 amino acids, respectively, and showed 87% similarity with P. putida IF-3 sequences. Approximately 600 transformants screened for chimeric genes between P. putida ATCC11173 and HPO central fragments were able to identify 113 active clones. Among them, we finally isolated 20 novel HPO genes. Sequence analyses of the obtained 20 clones showed higher homology genes with P. putida or Sinorhizobium or Streptomyces strains. Although the HPO A9 clone showed the lowest homology with HPO11172, clones in group B, including CS19, showed a relatively higher homology of 80%, with 70% identy. E. coli cells expressing these HPO chimeric genes were able to successfully bioconvert chlorodimedone with KBr or KCl as substrate.

Microbial Transformation of Aniline to Acetaminophen

  • Lee, Sang-Sup;Jin, Hyung-Jong;Son, Mi-Won
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.30-34
    • /
    • 1992
  • In order to obtain acetaminophen, a popular analgesic-antipyretic, through microbial p-hydroxylation and N-acetylation of aniline, various fungi and bacteria were secreened. Among them, Streptomyces species were chosen for strain improvement by the use of interspecific protoplast fusion technique. Two interspecific fused strains were developed between S. rimosus (N-cetylation function) and S. aureofaciens (p-hydroxylation function) and also between S. lividans and S. globisporus. For efficient protoplast fusion and cell wall regeneration, various conditions were examined. In a typical experiment of mixed S rimosus ($pro^- \;his^-$) and S. aureofaciens ($ilv^-$) protoplasts with 40% (w/v) polythylene glycol 3350 (PEG) for 3 min gave $8.3\times10^{-7}$ of fusion frequency. Treatment of mixed S. lividans (pant-) and S. globisporus (leu-) protoplasts with 50% (w/v) PEG for 3 min at $30^\circ{C}$ gave $1.2\times10^{-6}$ of frequency. Among the fused strains, up to 40-50% increase in p-hydroxylation power was observed. To investigate the possibility of plasmid involvement in p-hydroxylation power was observed. To investigate the possibility of plasmid involvement in p-hydroxylation of acetanilide, plasmid curing was attempted. We found that cells treated with acriflavine (at the frequency of 100%) and cells regenerated from protoplsts of S. auroefaciens (2% frequency) lost their p-hydroxylation function.

  • PDF

Culture-Based and Denaturing Gradient Gel Electrophoresis Analysis of the Bacterial Community Structure from the Intestinal Tracts of Earthworms (Eisenia fetida)

  • Hong, Sung-Wook;Kim, In-Su;Lee, Ju-Sam;Chung, Kun-Sub
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.885-892
    • /
    • 2011
  • The bacterial communities in the intestinal tracts of earthworm were investigated by culture-dependent and -independent approaches. In total, 72 and 55 pure cultures were isolated from the intestinal tracts of earthworms under aerobic and anaerobic conditions, respectively. Aerobic bacteria were classified as Aeromonas (40%), Bacillus (37%), Photobacterium (10%), Pseudomonas (7%), and Shewanella (6%). Anaerobic bacteria were classified as Aeromonas (52%), Bacillus (27%), Shewanella (12%), Paenibacillus (5%), Clostridium (2%), and Cellulosimicrobium (2%). The dominant microorganisms were Aeromonas and Bacillus species under both aerobic and anaerobic conditions. In all, 39 DNA fragments were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Aeromonas sp. was the dominant microorganism in feeds, intestinal tracts, and casts of earthworms. The DGGE band intensity of Aeromonas from feeds, intestinal tracts, and casts of earthworms was 12.8%, 14.7%, and 15.1%, respectively. The other strains identified were Bacillus, Clostridium, Enterobacter, Photobacterium, Pseudomonas, Shewanella, Streptomyces, uncultured Chloroflexi bacterium, and uncultured bacterium. These results suggest that PCR-DGGE analysis was more efficient than the culturedependent approach for the investigation of bacterial diversity and the identification of unculturable microorganisms.

An Efficient Approach for Cloning P450 Hydroxylase Genes from Actinomycetes

  • Hyun, Chang-Gu;Kim, Jung-Mee;Hong, Soon-Kwang;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.295-299
    • /
    • 1998
  • Oligonucleotide primers were designed and successfully applied to amplify DNA fragments of P450 hydroxylase genes from actinomycetes which produce a large variety of medically important metabolites. Primers were designed based on several regions of strong similarities in amino acid sequence of P450 hydroxylases from a variety of actinomycetes, primarily in the regions of an oxygen binding site and a heme ligand pocket. These primers were used to amplify DNA fragments from seven different actinomycetes species producing a variety of different compounds. The deduced amino acid sequences of the isolated fragments revealed significant similarities to known P450 hydroxylase including the product of the suaC or subC genes from Streptomyces griseolus that is capable of metabolizing a number of sulfonylurea herbicides, and to the product of the $P450_{sca2}$ from S. carbophilus that produces a specific HMG-CoA reductase inhibitor. This method should help researchers in cloning the P450 hydroxylase genes involved in the biosynthesis of useful compounds.

  • PDF

Inhibitory effect of luthione on tacrolimus-induced DNA damage, apoptosis and inflammatory response in olive flounder natural embryo cells (넙치 배아세포에서 tacrolimus에 의한 DNA 손상, 세포사멸 및 염증성 반응에 대한 luthione의 억제 효과)

  • Park, Sang Eun;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Tacrolimus, a type of macrolide produced by Streptomyces tsukubaensis, is widely used as an immunosuppressant. However, continuous exposure to tacrolimus causes oxidative stress in normal cells, ultimately inducing cell injury. Therefore, this study investigated whether luthione, a reduced glutathione, could inhibit tacrolimus-induced cytotoxicity in olive flounder (hirame) natural embryo (HINAE) cells. According to the results, luthione significantly inhibited tacrolimus-induced reduction in cell viability in a concentration-dependent manner. Additinally, although luthione unaffected autophagy by tacrolimus, tacrolimus-induced apoptosis was significantly suppressed in the presence of luthione. Luthione also markedly blocked DNA damage in tacrolimus-treated HINAE cells, associated with the inhibition of reactive oxygen species (ROS) generation. Additionally, tacrolimus cytotoxicity in HINAE cells was correlated with increased inflammatory response, also attenuated by luthione. Collectively, these results show that at least luthione protects HINAE cells against tacrolimus-induced DNA damage, apoptosis, and inflammation, but not autophagy, by scavenging ROS. Although additional in-vivo studies are required, this study's results can be used as a basis for utilizing luthione to reduce the toxicity of fish cells caused by excessive immune responses.

The Influence of Adjuvants on Herbicide Activity of Streptomyces scopuliridis KR-001 (토양 방선균 Streptomyces scopuliridis KR-001 균주 배양액의 살초활성을 증가시키는 Adjuvant 탐색)

  • Kim, Jae Deok;Sin, Hoon Tak;Kim, Young Sook;Ko, Young Kwan;Cho, Nam Kyu;Hwang, Ki Hwan;Koo, Suk Jin;Choi, Jung Sup;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.288-294
    • /
    • 2015
  • This study was conducted to investigate efficient adjuvants to increase herbicidal efficacy of metabolites from Streptpmyces scopuliridis KR-001. Commonly used 21 adjuvants mixed with the metabolites were applied to eight weed species (six grass weeds and two broadleaved weeds). Based on the visual evaluation, two adjuvants, LE7 (Polyoxyethylene lauryl ether) and EP4C (Sodium bis (2-ethylhexyl) sulfosuccinate), were selected as most efficient adjuvants to elevate herbicidal efficacy of the metabolites. Higher efficacy in the LE7 and EP4C was obtained when overall spray volume was $2,000L\;ha^{-1}(65{\mu}g\;a.i.\;ml^{-1})$ than $1,000L\;ha^{-1}(130{\mu}g\;a.i.\;ml^{-1})$. Field study demonstrated that $1,300{\mu}g\;ml^{-1}$ of metabolites from KR-001 applied with EP4C at concentration of $2{\mu}g\;ml^{-1}$ provided a highly effective post-emergence weed control which was almost equivalent to the glufosinate-ammonium at $540g\;a.i.\;ha^{-1}$. On the basis of these results, combination and multiple application methods could be developed to enhance herbicidal efficacy of metabolites from KR-001.

Characterization of Streptomyces Species Causing Potato Scab in Korea: Distribution, Taxonomy, and Pathogenicity

  • Lim, Chun-Keun;Park, Duck-Hwan;Kim, Jeom-Soon;Cho, Jun-Mo;Kwon, Soon-Wo;Hur, Jang-Hyun
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • From 1996 to 1999, potato-growing areas in Korea were surveyed for identification and distribution of potato scab pathogens. Potato scab was widely distributed in the mass cultivation areas, especially in Jriu island, southern areas of Chonnam and Gyounggi provinces, and the alpine area of Gangwon province. Jeju island was the most affected area by this disease. A total of 55 Streptomyces strains were isolated from potato scab lesions, among which 40 strains were pathogenic on progeny tubers. Among the pathogenic strain, 21 strains were identified as previously described S. scabies, 7 Strains as S. turgidiscabies, and 5 Strains as S. acidiscabies, while 7 strains were observed as having distinct phenotypic properties. These strains were classified into six distinct clusters based on phenotypic characteristics and selected representative strains for each cluster. S. scabies (S33) had grey spores in a spiral chain. Mean-while, S. turgidiscabies (S27) had grey spores, S. acidiscabies (S71) had white spores, S. luridiscabiei (S63) had yellow-white spores, S. puniciscabiei (S77) had purple-red spores, and S. niveiscabiei (S78) had thin and compact white spores, all in a rectiflexuous chain. Pathogenicity was determined by the production of thaxtomin A and homologs of necl and ORFtnp genes. In TLC, representative strains S27, S71, S63, S77, and S78 produced a yellow band that co-migrated with the authentic thaxtomin A. However, thaxtomin A was not detected in chloroform extracts from oatmeal broth culture and Slice tuber tissue of S. luridiscabiei (S63) and S. puniciscabiei (S77) by HPLC analysis. In addition, no homologs of necl and ORFtnp genes in S. acidiscabies (S71), S. luridiscabiei (S63), S. puniciscabiei (S77), and S. niveiscabiei (S78) were detected by PCR and Southern hybridization analysis.

Ecological Characteristics of Actinomycetes from Mercury and Chrome Polluted Soil (수은, 6가크롬 오염토양으로부터 분리된 방선균군의 생태학적 특성)

  • Cho Min-Hye;Han Sang-Mi;Baek Ha-Ju;Whang Kyung-Sook
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.38-45
    • /
    • 2006
  • Ecological characteristics of microbial populations inhabiting heavy metal polluted soil were investigated. The samples were collected from 293 sites around an factory and industry at Gyeoungsangbuk-do. We measured the contents of seven heavy metal elements (Cd, Cu, As, Hg, Pb, $Cr^{6+}$, CN), seven sites have been seriously contaminated by mercury and chrome. A quantitative evaluation of microbial populations in mercury and chrome contaminated soil was examined by using plate count method. Bacterial numbers in polluted soil samples ranged from $7.4X10^5\;to\;9.3X10^7\;cfu\;g^{-1}$, about $10\sim100$ fold less than the count for the unpolluted soil. Moulds were not detected in chrome polluted soil. The log values of actinomycetes of each contaminated soil samples were log ranged from 6.18 to 7.52. The ratio of actinomycetes was similar to unpolluted soil. The investigation showed actinomycetes to be the major microbial population inhabiting the mercury and chrome polluted soil. Thirty-one isolates among the total isolates were examined for antibacterial activity. These isolates were identified based on a phylogenetic analysis using 16S rRNA gene nucleotide sequences, they were categorized in three major phylogenetic groups, belong to the Streptomyces (6 strains), Saccharopolyspora (3 strains), Nocardiodes (1 strain). On the phylogenetic tree, the clade consisting of five isolates were distantly related to all of the established Streptomycetes genera, indicating the possibility as members of new species.