• Title/Summary/Keyword: Streptomyces mobaraensis

Search Result 4, Processing Time 0.016 seconds

A Novel Transglutaminase Substrate from Streptomyces mobaraensis Inhibiting Papain-Like Cysteine Proteases

  • Sarafeddinov, Alla;Arif, Atia;Peters, Anna;Fuchsbauer, Hans-Lothar
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.617-626
    • /
    • 2011
  • Transglutaminase from Streptomyces mobaraensis is an enzyme of unknown function that cross-links proteins to high molecular weight aggregates. Previously, we characterized two intrinsic transglutaminase substrates with inactivating activities against subtilisin and dispase. This report now describes a novel substrate that inhibits papain, bromelain, and trypsin. Papain was the most sensitive protease; thus, the protein was designated Streptomyces papain inhibitor (SPI). To avoid transglutaminase-mediated glutamine deamidation during culture, SPI was produced by Streptomyces mobaraensis at various growth temperatures. The best results were achieved by culturing for 30-50 h at $42^{\circ}C$, which yielded high SPI concentrations and negligibly small amounts of mature transglutaminase. Transglutaminasespecific biotinylation displayed largely unmodified glutamine and lysine residues. In contrast, purified SPI from the $28^{\circ}C$ culture lost the potential to be cross-linked, but exhibited higher inhibitory activity as indicated by a significantly lower $K_i$ (60 nM vs. 140 nM). Despite similarities in molecular mass (12 kDa) and high thermostability, SPI exhibits clear differences in comparison with all members of the wellknown family of Streptomyces subtilisin inhibitors. The neutral protein (pI of 7.3) shares sequence homology with a putative protein from Streptomyces lavendulae, whose conformation is most likely stabilized by two disulfide bridges. However, cysteine residues are not localized in the typical regions of subtilisin inhibitors. SPI and the formerly characterized dispase-inactivating substrate are unique proteins of distinct Streptomycetes such as Streptomyces mobaraensis. Along with the subtilisin inhibitory protein, they could play a crucial role in the defense of vulnerable protein layers that are solidified by transglutaminase.

Expression and Cloning of Microbial Transglutaminase in S. cerevisiae (세균 유래 단백질연결효소 Transglutaminase의 클로닝과 효모에서의 발현)

  • Kim, Hyoun-Young;Oh, Dong-Soon;Kim, Jong-Hwa
    • The Korean Journal of Mycology
    • /
    • v.36 no.1
    • /
    • pp.93-97
    • /
    • 2008
  • A $Ca^{2+}-independent$ microbial transglutaminase (mTGase) from the actinomycete Streptomyces mobaraensis IFO13819 is a useful enzyme in the food industry. It is consists 406 amino acid residues, which comprised leader and pro region of 75 amino acid residues and the structure region of 331 amino acid residues. Pro and structure gene of TGase were cloned into the yeast shuttle vector pYAEG-TER and then used to transform Saccharomyces cerevisiae 2805. Expression of mTGase in recombinant was confirmed with Northern hybridization and the maximal activity of TGase was shown 26 mU/ml.

The Separation of Transglutaminase Produced from Streptomyces mobaraensis and Its Application on Model Food System (Streptomyces mobaraensis로부터 생산되는 transglutaminase 분리 및 모델식품 적용)

  • Yoo, Jae-Soo;Shin, Weon-Sun;Chun, Gie-Tack;Kim, Young-Soo;Jeong, Yong-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.260-265
    • /
    • 2003
  • Transglutaminase (TG) was prepared from Streptomyces mobaraensis to improve texture and self-life of food. In preliminary experiments, texture of the dough was not improved due to the interference in microbial TG reaction by proteases present in the crude enzyme. Among the cation exchange resins tested for the removal of proteases, MonoPlus S 100 was the most efficient. Further purification steps with a quaternary ammonia salt resin and gel permeation chromatography effectively removed proteases from crude enzyme. Molecular weight of purified enzyme was about 38,000 on SDS-polyacrylamide gel electrophoresis. Farinograph data showed the addition of purified enzyme to wheat flour gave higher stability and lower weakness values those that of crude enzyme.

Application of Transglutaminase for Hair Revitalization (모발 개선을 위한 Transglutaminase의 적용)

  • Kim, Yun Seog;Park, Su Jin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The use of protein-crosslinking enzyme, transglutaminase, as a biocatalyst in the processing of hair offers a variety of exciting and realistic possibilities which include improving the rigidity of hair fibers. Among the transglutaminases from many different living organisms, the microbial enzyme prepared from Streptomyces mobaraensis, significantly increased the tensile strength of hair by 15.64% compared to a control when it was applied to damaged hair. This indicates that transglutaminase can restore the negative effects of washing hair with shampoo. Also transglutaminase improved the characteristics of hair surface, which could be useful for increase of luster and reduction of friction force of hair surfaces.