• Title/Summary/Keyword: Strengthening Plate

Search Result 256, Processing Time 0.021 seconds

A Study on Physical Behavior Property of R/C Beams Strengthened with Bonding Methods (보강재의 부착방법의 따른 물리적 거동 특성에 관한 연구)

  • 한만엽;백승덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.727-732
    • /
    • 1999
  • In this research, we made an experiment on the 10 specimen beams that we made. The specimen beams consist of 4 steel plate strengthening beams and 5 carbon fiber sheet strengthening beams. We applied the methods of notch, rounding off a edge, anchor bolt and side shear strengening to the steel plate and for the case of carbon fiber sheet, we applied the methods of anchor bolt, line anchor and shear strengthening. After all the cases were applied, the beams was measured and analyzed about the behavior property of strengthened beams, th ability of strengthening method, the relation between load and the shape of failure, the crack load, the yield load, the shape of crack pattern, the increasing rate from yield load and maximum load and the strain of rebar. All the strengthening methods resulted in almost same value until the yield load, and it wasn't quite different from the theoretical value. In comparison with existing method, the SER, SEAS for the steel plate and the CEA, CESS, CCESS for carbon fiber sheet showed the increasement of ductility with big displacement.

  • PDF

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.

A Study on Prevent Delamination of Strengthening Material (보강재의 탈락 방지 방안 연구)

  • 한만엽;백승덕
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.809-814
    • /
    • 1998
  • Recently many cases that using strengthening method with a steel plate or carbon-fiber sheet in a construction field are increasing. In this reason, it is demanded that developing a plan of preventing delamination of strengthening material. So in this research, for the case of strengthening method of steel plate, it is made use of notch and anchor bolt and for the case of carbon fiber sheet, it is made use of notch, anchor bolt, line anchor and shear strengthening. After all the cases were applied, we made 15 specimen beams. The beams was measured and analyzed about the behavior property of strengthened beams, the ability strengthening method, the relation between load and the shape of failure, the crack load, the yield load, the shape of crack pattern, the increasing rate from yield load and maximum load and the strain of rebar. All the strengthening methods results in almost same value until the yield load, and it wasn't quite different from the theoretical value. But for the case of increasing rate from the yield load and maximum load, comparing with the existing method, the new strengthening methods are proved to be profitable about the safety.

  • PDF

Flexural performance of wooden beams strengthened by composite plate

  • Tahar, Hassaine Daouadji;Abderezak, Rabahi;Rabia, Benferhat
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.233-259
    • /
    • 2020
  • Using bonded fiber-reinforced polymer laminates for strengthening wooden structural members has been shown to be an effective and economical method. In this research, properties of suitable composite materials (sika wrap), adhesives and two ways of strengthening beams exposed to bending moment are presented. Passive or slack reinforcement is one way of strengthening. The most effective way of such a strengthening was to place reinforcement laminates in the stretched part of the wooden beam (lower part in our case), in order to investigate the effectiveness of externally bonding FRP to their soffits. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the wooden beam, the sika wrap composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the composite-wooden hybrid structures. The results showed that the use of the new strengthening system enhances the performance of the wooden beam when compared with the traditional strengthening system.

Behavior and stress check of concrete box girders strengthened by external prestressing

  • Zhang, Yu;Xu, Dong;Liu, Chao
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • The deterioration of existing bridges has become a major problem around the world. In the paper, a new model and an associated stress checking method are proposed for concrete box girders strengthened by external prestressing. The new model called the spatial grid model can analyze all the spatial behaviors clearly by transforming the box girder into discrete orthogonal grids which are equivalent to plate elements. Then the three-layer stresses are employed as the stress checking indices to evaluate the stress state of the plate elements. The initial stress check before strengthening reveals the cracked and potential cracking areas for existing bridges, making the strengthening design more targeted and scientific; the subsequent stress check after strengthening evaluates the strengthening effect and ensures safety. A deficient bridge is selected as the practical example, verifying the accuracy and applicability of the proposed model and stress checking method. The results show that principal stresses in the middle layer of plate elements reflect the main effects of external prestressing and thus are the key stress checking indices for strengthening. Moreover, principal stresses check should be conducted in all parts of the strengthened structure not only in the webs. As for the local effects of external prestressing especially in the areas near anchorage and deviator, normal stresses check in the outer and inner layers dominates and local strengthening measures should be taken if necessary.

Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams

  • Serror, Mohammed H.;Soliman, Essam G.;Hassan, Ahmed F.
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.385-397
    • /
    • 2017
  • Currently, CFRP (Carbon Fiber Reinforced Polymer) plate bonding is used quite extensively as a strengthening method. In this technique, a composite CFRP plate or sheet of relatively small thickness is bonded with an adhesion material to steel or concrete structure in order to improve its structural behavior and strength. The sheets or plates do not require much space and give a composite action between the adherents. In this study, the rotation capacity of CFRP-strengthened cold-formed steel (CFS) beams has been evaluated through numerical investigation. Studies on different structural levels have been performed. At the beam level, C-section has been adopted with different values of profile thickness, web height, and flange width. At the connection level, a web bolted moment resistant type of connection using through plate has been adopted. In web-bolted connections without CFRP strengthening, premature web buckling results in early loss of strength. Hence, CFRP sheets and plates with different mechanical properties and geometric configurations have been examined to delay web and flange buckling and to produce relatively high moment strength and rotation capacity. The numerical results reveal that CFRP strengthening may increase strength, initial stiffness, and rotation capacity when compared with the case without strengthening.

Structural Behavior of RC Beam Strengthened with Steel Plate (강판 휨보강된 철근 콘크리트보의 구조적 거동)

  • 오병환;강동욱;조재열;채성태;이명규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.598-604
    • /
    • 1997
  • In recent years, strengthening by epoxy-bonded steel plates, carbon fiber sheets, aramid fiber sheets and so on, is spotlighted. Among them, the method using steel plates is most widely applied. Most studies have dealt with strengthening by epoxy-bonded steel plates. However the actual behavior of strengthened RC beams are not well established. Particularly, the studies on the separation load thar affects failure load of the beam are relatively insufficient. In this study, test parameters are the magnitude of pre-load, plate length, plate thickness, existence and spacing of anchor bolt, the number of plate layer and the height of side strengthening, 17reinforced concrete beams are strengthened by steel plates according to test parameters. Deflection, failure load, strains of reinforcing bar, concrete and plate are measured from tests(4 points loading). The failure mode, and separation load are analyzed from these measured data. The difference between Robert's theory and test results is discussed, and the prediction equation for separation load in the case of rip off is proposed.

  • PDF

Static and Fatigue Behavior Characteristics of Reinforced Concrete Beams Strengthened with CFRP Plate (CFRP Plate로 보강된 철근콘크리트 보의 정적 및 피로 거동 특성)

  • Kim, Kwang-Soo;Kim, Jin-Yul;Kim, Sung-Hu;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.141-148
    • /
    • 2008
  • In the recent construction industry, Carbon Fiber Reinforced Polymers(CFRPs) have been highly considered as innovative strengthening materials for civil structures due to their superior material properties. This paper is to offer design data and strengthening efficiency of reinforced concrete beams strengthened with CFRP Plate. Static tests were carried out to evaluate failure modes and strengthening capacity. Displacements and strains of steel and CFRP plates were obtained and analyzed through a series of fatigue tests. Also, Those evaluated the energy dissipation. Results of the tests showed increase in strengthening ratios caused debonding failure at the end of beams. For the beams wrapped with CFRP sheets around the end of the plates, debonding failure mode that was induced from flexural cracks was indicated. Through the fatigue tests, it was observed that displacements, strains of steel and CFRP plates converged into certain values. It is also proved that the beams strengthened with CFRP plates are able to resist fatigue loading under serviceability.

A Study on the Behavior Evaluation & Box Shape Designs of FRP Stiffeners (FRP 보강재의 Box 형상 설계 및 거동 평가에 관한 연구)

  • Jung, Woo-Young;Song, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.165-168
    • /
    • 2008
  • This paper presents the design, fabrication and performance of a reinforced concrete beam strengthened by GFRP box plate and its possibility for structural rehabilitations. The load capacity, ductility and failure mode of reinforced concrete structures strengthened by FRP box plate were investigated and compared with traditional FRP plate strengthening method. This is intended to assess the feasibility of using FRP box plate for repair and strengthening of damaged RC beams. A series of four-point bending tests were conducted on RC beams with or without strengthening FRP systems the influence of concrete cover thickness on the performance of overall stiffness of the structure. The parameters obtained by the experimental studies were the stiffness, strength, crack width and pattern, failure mode, respectively. The test yielded complete load-deflection curves from which the increase in load capacity and the failure mode was evaluated.

  • PDF

Structural behavior on the steel beam with strengthening bonded carbon plate (카본판을 접착보강한 강재의 거동분석)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • The use of advanced composite materials in strengthening and repair of existing structures is increasing rapidly. This paper describes an effectiveness of a bonding of carbon fiber reinforced sheets to corroded steel members for the repair. Three types of surface treatment, what we call cleaning, of corroded plate are chosen as parameters. They are "without cleaning","removal of painting by brushing" and "complete removal of painting". From the experimental study, the following findings are obtained. 1) When the steel plate is subjected to tensile force, carbon fiber sheets adhered to the painted steel gives a higher strength against peeling compared to that of the plate without painting, 2) The grade of surface treatment, or cleaning of the corroded steel plate affects the strengthening effect.