• Title/Summary/Keyword: Strengthening Effect

검색결과 1,374건 처리시간 0.028초

FRP 쉬트 및 GSP로 보강된 RC 슬래브의 휨거동에 관한 실험적 연구 (Experimental Study on Flexural Behavior of RC Slab Strengthened by FRP Sheet and GSP)

  • 안기만;김광수;김태완;박선규;이영재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.185-188
    • /
    • 2006
  • Recently, an improved capacity for RC bridges is required by their deterioration or necessary to carry traffic increase. Strengthening is known as a better way to improve capacity of bridges than reconstructing. Fiber Reinforced Plastics (FRP) is introduced as one of the best strengthening structures in this paper. It is also known as an economical improvement. Therefore, FRP sheet and Glass Fiber-Steel Composite Plate (GSP) in this research were used in strengthening slab of RC bridges. Experimental data from the strengthening will be helpful to better understand the slab behavior and an effect of the strengthening.

  • PDF

RC 보의 손상 상태를 고려한 탄소섬유시트의 휨보강 효과 (Flexural Strengthening Effect of Carbon Fiber Sheet Considering Different Status of Damages in RC Beams)

  • 박성수;조수제
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.157-167
    • /
    • 2002
  • In most cases, quantity of reinforcement is determined without regard to the difference of initial strain, and status of damages when calculated the strengthening in flexure at beams. Thus, the purpose of this study is to investigate the flexural strengthening efficiency and behavior of RC beams strengthened with carbon fiber sheets(CFS) considering different status of damages. in this paper, a nonlinear analysis program considering rip-off strength and residual stress of steel bars and concrete in different status of damages is developed to predict the flexural behavior of CFS strengthened beams. Rip-off strength equation is obtained by modifying moment of inertia in the Robert's equation. And conformed developed nonlinear analysis program in variable of strengthening CFS amount and status of damages(initial, case1, case2, case3) and tension reinforcement ratio(0.2~1.0%).

해수중 콘크리트 기둥의 열화 및 보강성능해석 (Deterioration of Concrete Columns under Sea-Water and Strengthening Analysis)

  • 김규엽;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1169-1174
    • /
    • 2001
  • In this study, the behavior of deteriorated concrete columns under sea-water before and after strengthening with glass fiber composite and the change of behavior by the deterioration of strengthening material are analyzed. In the analysis, the characteristics of concrete deteriorated in sea-water, preloading effect, and corrosion of steel are considered. The result of analysis is verified by the comparison with the experimental data. Using constitutive equations of the concrete and corroded steel, load-moment interaction curves of both deteriorated and strengthened concrete column are derived.

  • PDF

강판 및 유리섬유쉬트로 전단보강된 철근콘크리트 보의 보강 및 연성 평가 (Strengthening and Ductility Evaluation of Reinforced Concrete Beams Shear-Strengthened by Steel Plates and Glass Fiber Sheets)

  • 문상범;오성영;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.691-696
    • /
    • 2000
  • Shear strengthening method by steel plates and fiber reinforced polymer lamination has recently been favorably selected due to its efficiencies of duration and performance. Shear failure being brittle and difficult to predict, reinforced concrete structures must have sufficient capacity to absorb the energy for shear failure and to support temporarily the overload which may result due to the loss of shear capacity to the structure. These respects being considered, this research has carried out with the purpose of the experimental verification of the shear strengthening effect and ductility evaluation.

  • PDF

CFS 보강 중 주기하중을 받은 RC보의 거동 (Behavior of RC Beam subjected to Cyclic Load during CFS Strengthening)

  • 조일래;장희석;이홍주;김희성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.481-484
    • /
    • 2004
  • This study was performed to analyze effect of cyclic load during CFS curing on the behavior of RC beam strengthened with CFS. In the experiment, five different beginning times of cyclic load and two different strengthening amounts of CFS were chosen for experiment parameters. From the experimental results, it could be known that the cyclic load during CFS curing might give detrimental effects to the CFS strengthening effects compared to without cyclic load cases.

  • PDF

FRP로 구속된 콘크리트 압축부재의 구속효과 분석 (Analysis of Confinement Effectiveness for FRP Confined Concrete Columns)

  • 최은수;최승환
    • 대한토목학회논문집
    • /
    • 제31권1A호
    • /
    • pp.19-24
    • /
    • 2011
  • FRP 자켓으로 콘크리트를 보강하는 경우 FRP의 탄성계수에 따라 강도증진효과가 상이하게 나타난다. 본 논문에서는 기존의 데이터를 사용하여 FRP 보강재의 탄성계수에 따른 보강효과를 분석하고, 실용적으로 사용할 수 있는 강도증진 추정모델을 제시하였다. FRP의 탄성계수는 일반 콘크리트의 압축탄성계수와 강재의 탄성계수를 기준으로 세 구간으로 구분하여 비교하였다. FRP의 탄성계수가 증가할수록 추정모델의 기울기 및 y-절편이 증가하는 것을 알 수 있었다. 또한, FRP의 탄성계수가 콘크리트의 압축탄성계수보다 작은 경우 FRP의 보강량이 작으며 보강효과가 없는 것으로 나타났으며, 이러한 경우 선형적인 모델을 사용하기 어렵다. 따라서 본 연구에서는 FRP의 탄성계수가 콘크리트 압축탄성계수보다 약 2배 큰 것만을 사용하는 경우의 보강효과 추정모델을 제시하였다. 본 연구에서 제시한 모델은 y-절편의 구속조건 여부와 상관없이 거의 동일한 결과를 보여 주었으며, 이러한 특징은 강재보강에서도 발견되는 것으로 합리적인 결과라고 판단할 수 있다.

정상 성인 호흡기능에 대한 들숨 근 강화훈련과 날숨 근 강화 훈련의 효과 비교 (Compare the Effects of Inspiratory and Expiratory Muscle Strengthening Training of Normal Adult Respiratory Function)

  • 이연섭;오민영;박주연;이대희;이예진;정다혜;홍지연;홍하연;김현수
    • 대한통합의학회지
    • /
    • 제4권1호
    • /
    • pp.41-47
    • /
    • 2016
  • Purpose : The purpose of this study was to examine the Compare the effects of inspiratory muscle strengthening training and expiratory muscle strengthening training of normal adult respiratory function. Method : In this study, we want to compare the effect of inspiratory muscle strengthening training(n=8) and expiratory muscle strengthening training(n=8) to target the normal adult 16 people. expiratory muscle strengthening training, was 25 minutes of training on the basis of the breathing image program that has been pre-recorded. inspiratory muscle strengthening training, use the power-breathe plus on the measured resistance value, was carried out for 25 minutes. Using the spirometer in order to examine the ability to breathe, FVC, FEV1, FEV1 / FVC, MVV was measured. Result : The results showd that in the breath muscle strengthening training FVC, FEV1, MVV increased statistically significantly. The inspiration muscle strength training FVC, FEV1, MVV was a statistically significant increase, FEV1/FVC decreased. There was no statistically significant difference between. Conclusion : In conclusion, both methods give the result of increasing the effective respiratory function. Inspiratory muscle strengthening training, the function of the lung is very limited to be used when and by us effectively and expiratory muscle strengthening training to increase the capacity of the lung is an effective way that will increase the volume.

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

Strengthening of Steel by Small Addition of Nb. V. etc.

  • Imai, Yunoshin;Shono, Yoshio
    • Nuclear Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.279-287
    • /
    • 1970
  • An an element vanadium is most effective and next is noibium to strengthening the low carbon steels by small addition both on fine precipitation and five grain. The combination effect of vanadium plus niobium or vanadium plus molybdenum is much more effective than adding on element.

  • PDF

CFRP 쉬트로 보강된 사각형 콘크리트 압축부재의 보강 효과 (Strengthening Effect of Axial Square Concrete Members Wrapped by CFRP sheet)

  • 문경태;박상렬;고광민
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권2호
    • /
    • pp.13-23
    • /
    • 2017
  • 본 연구는 사각형 콘크리트 압축부재를 CFRP 쉬트로 감쌌을 때의 보강효과와 거동 특성에 대한 연구로, CFRP 쉬트로 보강한 경우 쉬트의 구속효과에 의하여 압축내력이 향상되었으나 사각형 단면이므로 원형단면보다 구속효과는 작게 나타났다. 보강효과와 거동특성을 확인하기 위하여 CFRP 쉬트의 보강겹수, 시험체의 크기, 형상비, 모따기, 및 단면 개량을 변수로 선정하여 실험을 계획하였다. 11개의 실험변수별로 각각 5개씩, 총 55개의 실험체를 제작하여 실험하였다. 압축시험결과 CFRP 쉬트의 구속에 의해 보강효과가 나타났으나 실험체의 크기가 증가함에 따라 구속효과는 떨어졌다. 반면에 CFRP 쉬트의 구속효과에 의하여 사각형 콘크리트 기둥의 연성은 매우 크게 증가되었다. 단면형상을 사각형에서 원형으로 변형한 경우 압축강도와 연성 모두 증가되었다. 또한 실험결과와 기존연구결과를 사용하여 CFRP로 구속된 사각형 콘크리트 부재에 대한 기존 강도추정식의 정확성과 신뢰성을 검증하였다.