• Title/Summary/Keyword: Strengthened

Search Result 2,954, Processing Time 0.03 seconds

Fatigue Behavior of the Strengthened Bridge Deck with CFS (CFS로 성능향상된 교량상판의 피로거동 특성)

  • 심종성;오홍섭;유재명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.701-704
    • /
    • 2000
  • Considerable research has been done to study the fatigue behavior of reinforced concrete bridge deck which is strengthened by carbon fiber sheets. Before the strengthening, the specimen was damaged by repeated loads with various repeat cycles. The results of this study show that strengthening efficiency is getting rised in the lower pre-damaged degree. When the fatigue damaged bridge-deck is strengthened, the crack propagation may be controled efficiently

  • PDF

Interface Debonding of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트 보강 철근콘크리트보의 계면박리에 관한 연구)

  • 박주현;이우철;정진환;조백순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.355-358
    • /
    • 2003
  • The strengthening method with CFS(Carbon Fiber Sheet) to reinforced concrete structures has a fatal defect. Strengthened beams have been almost failed far below their ultimate strength due to interface debonding failure between the surface of concrete and CFS. The purpose of this study is to investigate the failure mechanism and failure behavior of strengthened RC beam using CFS.

  • PDF

Prediction Model Using Upper Bound Theorem of Shear Strength for RC Beams Strengthened by FRP (상한계 이론을 이용한 FRP로 보강된 RC보의 전단강도 예측 모델)

  • 홍성걸;문선혜
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.908-911
    • /
    • 2003
  • This study was performed to verify the effect of reinforcement of RC Beams strengthened($90^{\circ}$ strip type) by FRP(CFRP) and Predited the shear strength of them using the upper bound theorem. The prediction model was confirmed with the result of the FEM analysis. The analyzed result showed thar shear-damaged RC beams by strengthened by FRP was improved their shear capacity.

  • PDF

A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by CFS or CFRP (CFS 및 CFRP로 전단보강된 RC보의 전단보강효과 비교연구)

  • 심종성;김규선;황성욱;김정구;이석무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.697-702
    • /
    • 1997
  • This study presents test results of RC beams strengthened by carbon fiber sheet (CFS) or carbon fiber reinforced plastics (CFRP) for increasing shear resistance. Fifteen specimens were tested, and the test was performed with different parameters including the type of strengthening materials (CFS, CFRP), shear-strengthening methods (wing type, jacket type, strip type), strip-spacing, strengthening direction of FRP. The results show that shear-damaged RC beams strengthened by either CFS or CFRP have more improved the shear capacity.

  • PDF

An analytical Study on the premature Failure Behavior of RC Beams Strengthened by Steel Plates (강판으로 보강된 RC 보의 조기파괴거동 해석)

  • 심종성;김규선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.821-826
    • /
    • 1998
  • The design methods for the steel plate strengthened RC structures are not well established yet because the structural behavior of plated RC beams is more complex than that of regular unplated ones. The main purpose of this paper is to present the premature failure mechanism of steel plate strengthened RC beams. The analytical models of interfacial stress and normal are also proposed in this paper. The comparisons between the analytical results using the proposed theory and experimental ones relatively satisfied.

  • PDF

An Experimental Study on Flexural Behavior of RC Bridge Deck Strengthened with Carbon Fiber Sheet (RC 교량상판의 휨 성능향상을 위한 탄소섬유 보강방법 연구)

  • 심종성;오흥섭;이승원;김경민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.827-832
    • /
    • 1998
  • Recently, Carbon Fiber Sheets(CFS) have been used for strengthening the deteriorated RC beams and bridge decks because of its resistant capacity of corrosion and easy repairing works. In this study, the static test tare performed on RC bridge decks strengthened with CFS. Test results show that ultimate strength of specimens strengthened with CFS is increased as 15~26% comparing to the control specimen.

  • PDF

An Analysis of Interface Debonding Failure on Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet (탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리해석)

  • 심종성;배인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.839-844
    • /
    • 1998
  • The purpose of this study is to analyze the interface debonding failure on RC beams strengthened with carbon fiber sheet(CFS). The behavior of damaged RC beams strengthened with CFS is analytically investigated using both linear elastic fracture mechanics (LEFM) approach and the finite element method. This study includes the investigation of the separation mode by interface fracture of the strengthening materials due to the interfacial shear and normal stresses.

  • PDF

Shear Strength of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (섬유보강 철근콘크리트 보의 전단강도 평가)

  • Hwang Hyun-Bok;Lee Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.401-404
    • /
    • 2004
  • In recent years, the use of fiber reinforced polymer (FRP) composites to repair or strengthen existing reinforced concrete (RC) structures is increasing In order to evaluate the shear strengths of RC structures strengthened by FRP composites, it is needed to understand the shear failure modes of these structures. This paper presents a rational equation to distinguish the shear fail modes of RC structures strengthened by FRP composites using the compatibility aided truss models.

  • PDF

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.

Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation

  • Kim, Sang Hun;Aboutaha, Riyad S.
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.333-353
    • /
    • 2004
  • Strength of reinforced concrete beams can easily be increased by the use of externally bonded CFRP composites. However, the mode of failure of CFRP strengthened beam is usually brittle due to tension-shear failure in the concrete substrate or bond failure near the CFRP-Concrete interface. In order to improve the ductility of CFRP strengthened concrete beams, critical variables need to be investigated. This experimental and analytical research focused on a series of reinforced concrete beams strengthened with CFRP composites to enhance the flexural capacity and ductility. The main variables were the amount of CFRP composites, the amount of longitudinal and shear reinforcement, and the effect of CFRP end diagonal anchorage system. Sixteen full-scale beams were investigated. A new design guideline was proposed according to the effects of the above-mentioned variables. The experimental and analytical results were found to be in good agreement.