• Title/Summary/Keyword: Strength variation

Search Result 1,644, Processing Time 0.028 seconds

The Effect of Resin Mixture Ratio on Characteristics of Tensile and T-peel Strength in Al/AFRP Laminates (Al/APRP 적층재의 수지혼합비가 인장 및 티-필(T-peel) 강도 특성에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2374-2382
    • /
    • 2002
  • Aluminum alloy/aramid fiber reinforced plastic(Al/AFRP) laminates consists of high strength metal(A15052) and laminated aramid fiber with structural adhesive bond. The mixture ratio effect of epoxy resin curing agent accelerator on the tensile strength and T-peel strength characteristic in Al AFRP laminates were investigated in this study. The epoxy. diglycidylether of bisphenol A(DCEBA), It'as cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test , five kinds of Al/AFRP laminates were named as Al/AFRP(1) and three others of Al/AFRP laminates were named as Al/AFRP(2). The comparison of tensile strength and T-peel strength with variation of resin mixture ratio were studied. Respectively. Al/AFRP(1) and Al/AFRP(2) indicated approximately 6.0 times and 7.0 times more improved maximum tensile strength in comparison with those of monolithic A15052. Al/AFRP(2) indicated approximately 1.5 times more impoved maximum T-peel strengths in comparison with those of Al/AFRP(1). As results. Al/AFRP(2) turned out to have more effective characteristics on the tensile strength and T-peel strength than those of Al/AFRP(1).

Relationship Between Lower Extremity Extensor Strength and Wall Squat Performance

  • Jung, Sung-hoon;Hwang, Ui-jae;Kim, Jun-hee;Jeon, In-cheol;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.26 no.4
    • /
    • pp.20-28
    • /
    • 2019
  • Background: The wall squat exercise has been recommended for strengthening of the lower extremity muscles with maintaining lumbar lordosis. Although squat has been studied to be related to lower extremity extensor strength, the relationship between wall squat and lower extremity extensor strength unclear. Because squat and wall squat are biomechanically different, study on the relationship is needed. Objects: The purpose of this study was to determine the lower extremity extensor strength associated with wall squat performance. Methods: 74 healthy volunteers were recruited to participate in this study. The volunteers were measured hip and knee extensors strength and then performed wall squat exercise for maximum count. Results: We found significant relationships between wall squat performance and hip extensor strength normalized by body weight, knee extensor strength normalized by body weight and the composite value. In a regression analysis, hip extensor strength normalized by body weight explained 29% of the variation in wall squat performance in males and 35% in females. Conclusion: These results demonstrate that hip extensor strength normalized by body weight is critical to wall squat performance in both sexes.

Effect of Yield Strength and Morphology of Spray-dried $Al_2O_3/15v/o ZrO_2$ Granules on the Compaction Behaviour

  • Shin, Dong-Woo;Yoon, Dae-Hyun;Lim, Chang-Sung
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.13-17
    • /
    • 1997
  • The densification of $Al_2$O$_3$/15v/o ZrO$_2$ (Zirconia Toughened Alumina: ZTA) to the 99% of theoretical density was attempted by controlling the processing parameters affecting the each processing step i.e., milling, spray-drying, forming and pressureless sintering. The ZTA processed under the identical conditions showed a large variation in the green and sintered densities, and the mechanical properties. The deviation of 4-point bending strength was more than 100MPa for the ZTA with ~99% of theoretical density. Moreover, the relative green and sintered densities were deviated greatly from the average value. This low reproducibility could be caused by the variation of spray-dried granule properties. Thus, the effect of yield strength and morphology of spray-dried ZTA granule on the green and sintered densities and the mechanical properties needs to be studied in detail. The objective of this work is to fine out the optimum condition of compaction pressure and compaction method depending on the properties of spray-dried granules.

  • PDF

Comparison of Fatigue Strength Criteria for TiNi/Al6061-T6 and TiNi/Al2024-T4 Shape Memory Alloy Composite (TiNi/Al6061-T6과 TiNi/Al2024-T4 형상기억복합재료에 대한 피로강도기준의 비교)

  • Jo, Young-Jik;Park, Young-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • This study produced a design curve and fatigue limit for a variation in volume ratio and reduction ratio of TiNi/Al composites. In many cases, stress-life curve does not indicate fatigue limit, so it was presented by probabilistic-stress-life curve. Goodman diagram was used to analyze the fatigue strength of materials with a finite life determined by repeated load and the fatigue strength of endurance limit with an infinite life. The fatigue experiment was conducted using the scenk-type plane bending specimen in same shape. The result of the fatigue test, which had been conducted under consistent stress amplitude, was examined. (i) The optimal condition for TiNi/Al in accordance with hot pressing (ii) Impacts of fatigue limit caused by a variation in reduction ratio and volume ratio of TiNi/Al composites (iii) Probability distribution for fatigue limit of TiNi/Al2024 and TiNi/Al6061.

Evaluation of anti-rust properties of mortar with functionality anti-rust agent (기능성 방청혼화제 혼입율 변화에 따른 모르타르의 방청성능 평가)

  • Kim, Sang-Sup;Lee, Myung-Ho;Yoon, Won-Geun;Jang, Deok-Bae;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.104-105
    • /
    • 2014
  • In this study, fundamental properties of mortar with the variation of dosage of anti-rust agent has been tested to evaluate the effect of the anti-rust agent. Dosage of anti-rust agent was fixed as 0,3,6,9%, respectively. The variation of the flow, compressive strength and diffusion speed of chloride ion has been tested to evaluate the effect of the anti-rust agent. Results showed that flow has been smally increased. For the compressive strength, compressive strength increased with the increase of dosage of agent. For the diffusion speed of chloride, the speed decreased with the increase of dosage of the anti-rust agent. For the overall consideration, it could be identified that when the dosage of anti-rust agent was fixed as 3-6%, the mortar showed the optimum performances.

  • PDF

A Study on the AC Interfacial Breakdown Properities of the Interface between Epoxy/EPDM with the variation of spreaded oil (도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연 파괴 특성에 관한 연구)

  • Bae, Duck-Kweon;Lee, Su-Kil;Jung, Il-Hyung;Lee, Jun-Eung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.897-899
    • /
    • 1999
  • In this paper, the interfacial dielectric breakdown phenomenon of interface between Epoxy/EPDM (ethylene propylene diene terpolymer) was discussed, which affects stability of insulation system of power delivery devices. Specimen structure was designed by using MAGSOFT's FLUX2D based on the finite elements method. Design concepts is to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the Epoxy/EPDM interface. AC interfacial breakdown phenomenon of was investigated by variation of interfacial conditions oil and temperature which are supposed to have influence on the interfacial breakdown strength. Interfacial breakdown strength was improved by spreading oil over interfacial surface. The decreasing ratio of the AC interfacial breakdown strength in non-oiled specimens was increased by the temperature rising and its of oiled specimens was not affected by temperature.

  • PDF

An Experimental Study on the Characteristics of Microporous Structure Formation by Curing Condition of Cement and Blast Furnace Slag Composite (시멘트 및 고로슬래그 경화체의 양생환경에 따른 미세 공극구조 형성 특성에 관한 실험적 연구)

  • Park, Cheol;Jung, Yeon-Sik;Seo, Chee-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.63-70
    • /
    • 2017
  • When industrial by-products like slag and fly ash are using in concrete with cement, it improves strength and durability against external deterioration factors by densifying the structure through potential hydraulic and pozzolanic reaction. But it has been pointed out that high dependence on the quality variation and the curing condition using a admixure material for concrete. In this study, the characteristics of internal micropore structure according to curing condition were analyzed for pastes and mortar specimens under using blast furnace slag powder. As a result, the variation of compressive strength and the internal microstructure were observed according to curing conditions by binder type. Particularly, using blast furnace slag powder, decrease in compressive strength were clearly observed in indoor and carbonation curing compared with water curing. The pore structure analysis also clearly observed the decrease of the gel pore existing in the CSH hydrate layer and the increase of the capillary pore in indoor and carbonation curing compared with water curing condition.

Engineering characterization of intermediate geomaterials - A review

  • T. Ashok Kumar;Ramanandan Saseendran;V. Sundaravel
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.453-462
    • /
    • 2023
  • Intermediate Geomaterials (IGMs) are natural formation materials that exhibit the engineering behavior (strength and compressibility) between soils and rocks. The engineering behavior of such material is highly unpredictable as the IGMs are stiffer than soils and weaker/softer than rocks. Further, the characterization of such material needs exposure to both soil and rock mechanics. In most conventional designs of geotechnical structures, the engineering properties of the IGMs are either aligned with soils or rocks, and this assumption may end up either in an over-conservative design or under-conservative design. Hence, many researchers have attempted to evaluate its actual engineering properties through laboratory tests. However, the test results are partially reliable due to the poor core recovery of IGMs and the possible sample disturbance. Subsequently, in-situ tests have been used in recent years to evaluate the engineering properties of IGMs. However, the respective in-situ test finds its limitations while exploring IGMs with different geological formations at deeper depths with the constraints of sampling. Standard Penetration Test (SPT) is the strength-based index test that is often used to explore IGMs. Moreover, it was also observed that the coefficient of variation of the design parameters (which represents the uncertainties in the design parameters) of IGMs is relatively high, and also the studies on the probabilistic characterization of IGMs are limited compared with soils and rocks. With this perspective, the present article reviews the laboratory and in-situ tests used to characterize the IGMs and explores the shear strength variation based on their geological origin.