• Title/Summary/Keyword: Strength stress ratio

Search Result 1,077, Processing Time 0.027 seconds

Shear Behaviour of Precast Concrete Modular Beam Using Connecting Plate (연결 플레이트를 사용한 프리캐스트 콘크리트 모듈러 보의 전단성능)

  • Cho, Chang Geun;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.65-72
    • /
    • 2021
  • The Precast concrete(PC) modular structures are a method of assembling pre-fabricated unit modules in the construction site. The essential aim of modular structures is to introduce a connection method that can ensure splicing performance and effectively resist shear strength. This study proposed PC module using a connecting plate that can replace splice sleeves and shear keys used in the conventional PC modular structures. To evaluate the splicing performance and shear capacity of the proposed method, the shear test was conducted by fabricating one monolithic reinforced concrete(RC) beam and two PC modular beams with a shear span-to-depth ratio as variables. The experimental results showed that the shear capacity of the PC modular beam was about 89% compared to that of the RC beam, and showed a failure of the RC beam according to the shear span-to-depth ratio. Therefore, it was considered that the connecting plate effectively transferred the stress between each PC module through the joint and ensure integrity. In addition, the applicability of shear strength equation of ACI 318-19 and Zsutty's equation to PC modular beams were evaluated. Results demonstrated that the improved shear strength equations are needed to consider reduction of shear strength in PC modules.

A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil (동결토 전단강도를 활용한 동착강도 산정에 관한 연구)

  • Choi, Chang-Ho;Ko, Sung-Gyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.13-23
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. It denotes that adfreeze bond strength is the most important design parameter for foundations in cold region. Adfreeze bond strength is affected by various factors like 'soil type', 'frozen temperature', 'normal stress acting on soil/pile interface', 'loading rate', 'roughness of pile surface', etc. Several methods have already been proposed to estimate adfreeze bond strength during past 50 years. However, most methods have not considered the effect of normal stress for adfreeze bond strength. In this study, both freezing temperature and normal stress have been controlled as primary factors affecting adfreeze bond strength. A direct shear box was used to measure adfreeze bond strength between sand and aluminum under different temperature conditions. Based on the test results, the relation between shear strength of frozen sand and adfreeze bond strength have been investigated. The test results showed that both of shear strength and adfreeze bond strength tend to increase with decreasing frozen temperature or increasing confining pressure. The ratio of shear strength and adfreeze bond strength, expressed as $r_s$, decreased initially frozen section but increased at much lower frozen temperature and there were uniform intervals under the different normal stress conditions. A method for predicting adfreeze bond strength using $r_s$ has finally been proposed in this study.

A Study on the Characteristics of SM570TMC Plates in Compression Members (SM570TMC 강재의 압축재 특성에 관한 연구)

  • Im, Sung Woo;Kim, Yo Suk;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.357-363
    • /
    • 2005
  • There is a great need for high-strength steel especially for the high-rise steel building structure. High-strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels. The application of high-strength steels to building structures should be reviewed as to whether the inelastic behavior equivalent to that of conventional steels can be attained or not. In this study, SM570TMC steel was tested to evaluate buckling strength under axial compressive force. The comparison tests for local buckling strength evaluation of box-type and H-shaped welded columns were performed with variable width-thickness ratios. As for the experimental check, the maximum strength of stub column was determined by local buckling as far as the limit of width-to-thickness ratio was satisfied with current design codes. Also, the strength of the stub column did not decrease suddenly by local buckling before maximum strength even when the ratio is not satisfied. The buckling strength of SM570TMC steel was higher than both ASD (Allowable Stress Design) and LRFD (Load and Resistance Factor Design) specifications.

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF

Strength Properties of Concrete using Non-Washed Recycled Coarse Aggregate (비세척된 재생 조골재 콘크리트의 강도특성)

  • 윤현도;김문섭;임경택;정수영;윤석천
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-494
    • /
    • 1998
  • This paper describes the possibility to reuse concrete waste produced by demolition of reinforced concrete structures as aggregate for concrete from the viewpoint of strength. Concrete rubble obtained from the demolished buildings at Taejon were crushing machine to reuse as coarse aggregate. The strength properties, such as compressive strength, splitting tensile strength, bending strength and shear strength, of recycled and normal concrete were examined and compared experimentally when water cement ratio was varied. From the results of this study, it was thought that in case of non-washed aggregate concrete, strength properties of recycled coarse aggregate is similar to that of normal concrete, In W/C 55%~45%, stress-strain curve of recycled concrete shows more stable than that of normal concrete, while in W/C 35%, it shows brittle behavior.

  • PDF

Fatigue Strength Evaluation of T-Peel Adhesive Joing for Light Weight Material (경량 재료의 T형 접합이음의 피로강도 평가)

  • Lee, K.Y.;Kong, B.S.;Choi, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.166-173
    • /
    • 1998
  • The evaluation of joint fatigue strength of light weight materials for an electrical vehicle body has been performed through T-peel joint tests with the design parameters such as joint style, adherend type, adherend thickness, adhesive thickness, and various adhesives. Fatigue strength was evaluated through 5-Hz, tension-tension, load controlled test with the zero stress ratio. It was observed that the fatigue strength of the joint increases with the increase of the adherend thickness. With the increase of the adhesive thickness, however, the fatigue strength of the joint increases insignificantly. An aluminum-FRP adherend combination shows much higher fatigue strength than an aluminum-aluminum adherend combination. The results of fatigue tests were found to be consistent with those of static tests.

  • PDF

Parametric Study on the Joint Strength of Unidirectional and Fabric Hybrid Laminate (일방향-평직 복합재 혼합 적층판의 기계적 체결부 강도에 관한 인자연구)

  • 안현수;신소영;권진회;최진호;이상관;양승운
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.9-12
    • /
    • 2002
  • A parametric study has been conducted to investigate the effect of the geometry on the strength of an unidirectional and fabric hybrid laminated composite joint. Tests are conducted for the specimens with nine different edge-to-hole diameter or width-to-hole diameter ratios. For the finite element analysis, the characteristic length method is used, and the tests for determining the characteristic length are performed additionally. Nonlinear contact problem between the pin and laminate is modeled by the gap element in MSC/NASTRAN. Tsai-Wu failure criteria is applied to the stress on the characteristic curve. The finite element and experimental results shows good agreement in strength of composite joint. Results of the parametric study shows the effect of the geometry is remarkable in the specimens with width-to-hole diameter ratio less than 2.8 and edge-to-hole diameter ratio less than 1.4.

  • PDF

A Comparative Study on the Use of High-strength Steel to the Medium-span Bridges (중ㆍ소규모 강교량의 고강도강 적용성 비교)

  • 김창우;박용명;황민오;박찬희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.218-225
    • /
    • 2004
  • A study has been performed to investigate the applicability of the high-strength steel to the medium-span composite girder bridges. A two- and four-girder simple and continuous bridges are considered. A proper span-to-depth ratio for the model bridges with SM490 and SM570 was evaluated by using the section optimization program, respectively. For the determined span-to-depth ratio, deflections and fatigue performance were also investigated. It was acknowledged that the high-strength steel reduces the weight of girder but the increase of deflection and fatigue stress should be considered especially in the positive moment area.

  • PDF

Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio (저치환율 모래다짐말뚝에 의한 복합지반의 응력분담거동에 대한 실험적 연구)

  • 유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.253-261
    • /
    • 2003
  • Mechanical behavior of composition pound improved by sand compaction pile (SCP) with low replacement area ratio could be more significantly affected by mechanical interaction between sand piles and clays than that of clay ground improved by SD or SCP with high replacement area ratio. It is essential to elucidate the mechanical interaction in the improved clay ground, in order to accurately estimate behavior in reducing settlement of the improved ground and increasing strength of clays. In this paper, through a series of model tests of composition ground improved by SCP with low replacement area ratio, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing behavior between sand piles and clays.

A Study on Liquefaction Potential at Reclained Land by Hydraulic Hammer Compaction (유압햄머다짐 준설매립지반의 액상화평가에 관한 연구)

  • 김종국;김영웅;최인걸;최원호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.517-524
    • /
    • 2001
  • In this study, the effect of relative density and fine contents(Finer then # 0.08mm sieve) on liquefaction phenomenon in reclaimed land by hydraulic hammer compaction is analyzed. For more site-specific studies, reclaimed land in Inchon International Airport is selected and the cyclic triaxial tests are performed on disturbed samples. In cyclic triaxial tests, the characteristics of reclaimed land in Inchon International Airport are considered sufficiently. The liquefaction resistance stress ratio ($\tau$$\ell$/$\sigma$v') can be defined by relative density 40, 50, 60, and 70% and also by fine contents : 0, 10, 20, 30, and 40% under relative density (D$\_$r/) 50% used disturbed samples. From tile result of comparing tile cyclic triaxial tests, it is shown that the liquefaction strength of soil increases with increases of relative density and fine contents. Fspecially fine contents is the main factor affecting the liquefaction potential. In addition, the liquefaction resistance stress ratio is reduced by the increase of fine content and tile ratio of change is steep until fine contents 20% and that is flexible during the range of fine contents 20% to 40%. Through this study, it is proved that the soil characteristics (fine contents 5∼20%) of the reclaimed land in Inchon International Airport flays an important role in the reduction of liquefaction potential.

  • PDF